디앤티&마약 직전모의 정오반영+해설강의
2018 디앤티&마약 직전모의고사 (나) 정답지.pdf
2018 디앤티&마약 직전모의고사 (나).pdf
안녕하세요.
마약팀 김정문입니다.
나형 21번 발문 표현에 작은 오류가 있어 수정된 파일로 재업로드 합니다.
본 모의고사는 온/오프라인 총합 약 2만명 정도의 수험생 분들이 풀어주셨습니다 :)
많은 관심가져주셔서 감사드리며, 코앞으로 다가온 수능날까지 최선을 다하시길 응원하겠습니다.
나형 해설강의
가형 해설강의
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 공통 6번.. 맞은 것을 고르는 문젠데 보기 4번을 명백히 지웠던 기억이 있음...
-
현메타 폭로 0
사실 지금 글 블라먹이고 하는거 애니프사들이 뒤에서 작업중인거임.꼭두각시 전쟁...
-
텔그 3
대학 내놔
-
덕코복권 망했다 2
더 망하면 탈릅하지뭐…
-
오늘 보닌 1
아직 안 씻음
-
햄버거 브랜드 추천좀
-
수학 2,3점 계산실수 탐구 1페 문제 오독
-
제가가긴힙긂
-
뀨뀨 0
뀨우
-
말투 중독됨뇨 연대 공대는 다 안됨뇨
-
한번씩만 축하 좀 해주면 감사하겠습니다 오르비언 여러분 앞으로도 잘 부탁드려요!!
-
사탐 메디컬.. 1
한의대 약대만 목표로 사탐으로 변경해서 한번 더 도전해보려 합니다. 과탐선택시와...
-
올해 욕먹겠지 ㅋㅋㅋ
-
할 것도 없이 하루가 녹아버리는데 시간은 드릅게 안 감
-
텔그메타인가요 5
사과대를내놓아라.
-
하나도 안되네요 ㅠㅠ
-
도란아 잘해보자.......
-
기대하면서 잤는데 이젠 뭘 기대하면서 자지
-
설마 내가 아무리 멍청해도 객관식 18번 칸부터 16번 17 번 마킹하고 원래...
-
하...전부터가고싶었던곳인데
-
미적보다 훨 낫고 공부량도 적긴한데 미적보다 재미도 덜하고 무엇보다 특유의 찝찝함이 너무 싫음.
-
저 맞팔안하는 신비주의 컨셈임뇨
-
텔그 vs 고속 4
라인은 메디컬. 하나만 선택한다면?
-
자야징 1
-
목표는 중경외시입니다 사문은 무조건 할겁니다 나머지 하나를 정법할려했는데 좀 고민이...
-
ㅇㅇ
-
조대 의대는 2퍼네요....ㅋㅋㅋㅋㅋㅋ
-
올수 수학 72점 (미적 28 29 30틀) 국탐 만점 영어를 조져서 재수하는데...
-
뭔가 어느 순간 갑자기 잘되는 느낌 초반에 강의 들으면서 분석하고 기초 쌓으니까...
-
나 텔그좀 봐줘 10
이거중에 어디 하나는 가능하겠지? 제발 ㅋㅋㅋ
-
과탐 조언좀요 3
설약 지망하는 08입니다. 전글에도 올렸지만 한번더 질문드립니다 ㅜ 생1은...
-
비유전은 백호고 유전은 한종철이라는데 누구 들을까요?
-
다같이 밤에 맥주에 치킨먹고 디저트로 케이크까지 먹으니까 진짜 너무행복하다
-
내신 확통임ㅇㅇ
-
그외의 분들은 나가 주세요
-
ㅇㅈ 5
저이렇게생김ㅇㅇ
-
'의대생'은 모르겠고 사직한 '전공의'들이라면 치대반수 2
나쁘지 않은 정도가 아니라 아예 탁월한 선택일수도 있다는 생각이 듬.. 이들의 경우...
-
제가 수능최저 3합7을 맞춰야하는데 메가 등급컷 기준 언매, 미적이 다 표점이...
-
예를 들어서 25/36 + 5/21 이런 거 할 때, 36 이랑 21의 최소공배수를...
-
빨갛게빨갛게 물들었네~
-
돈 벌어 올껭
-
제가 알기로는 공대가 완전 남초라는데 왜 여자들한테는 인기가 없나요?
-
주변에서 자꾸 수분감 풀고 제가 한번 풀어봤는데 조금 꼬이는것을 얘는 풀고.. 근데...
-
미적 30번 만약 곱하기 자연수를 줬다면 정답륭 몇% 예상? 5
저는 한 4% 장답률 12% 말도 안됨 ㅋㅋㅋㅋ
-
사실 행사 자체를 간 적이 없음뇨..
-
내일 대구에 놀러가요 19
기대되요 대구는어떤곳일까
-
단일대오로 똘똘 뭉쳐서 정부에 맞서도 모자랄 판에 지들끼리 갈라치기하면서 싸움.
-
후..일단은 1등급 받으면 그때 하도록 하죠 제가 아직은 종합으로 안나와서 극단적인...
-
아니 내가 개때잡 마무리 하고 수분감 들어갈라그랬는데 현우진T커리는 연계가 좋다고...
가형인데 첫번째해설강의들어야하나..
나형 해설강의는 꼭 들어야겠네요
나형 해설강의 해주시는분
미모 실화?
고우시다
사랑해요
가형러인데 나형 우선 풀게요
와.... 목동러셀에서 애들이 이야기를 많이해서
이름만 듣다가 처음 영상보네요.
강의 잘들었습니다^^
헐 나형 풀어야지
나형 잘 풀었습니다 형님. 해설강의두요
근데 형은 왜 안하셨어요? 보고싶은뎅 ㅋㅋㅋ
나형 해설강의 감사하옵나이다
와 나형... 대박 채영닮았다
수능끝나고 나형 해설강의 꼭 들어야겠다
ㅋㅋ해설강의 들을까 말까 고밈했는데 들어야겠다
(나) 형에도 확통이 있어서 정말 다행이야...
해설강의 꼭 들어야 하겠네요 ㅋㅋ
가형풀고 나형듣는다
지우지 말아주세요 수능끝나고 첫번째 해설 강의 들으러 올게요
가형 해설분 올티 닮으셨다
헐 ㄹㅇㅋㅋ
헐 나형쌤미모 인강시장에서 탑인듯
헐 쉣 나형분 하시는분 누구??? 저 나형으로 바꿔야겟는데;;; 공부 잘될듯
진짜 이쁘시다 나형..
나형듣는분들 집증 안되실듯...
미모에 취해서리~
윽 심쿵 ㅠㅠㅠ
가형분 살짝 올티 닮으심 ㅋㅋ
내가 왜 나형을 듣고 있지?
가형 의문의 1패
목동러셀 갓예지T.......
가형 해설강의 ㄹㅇ루 주요문항만 해설하시네..
이거 1컷 얼마정도인가요??
한가지 궁금한게 있습니다.
(가형20번) 나형 20번 ㄷ 발문을 수정해야하지 않을까요?
접하는 상황을 이용해 푸는 문제가 되려면
" f(x)+g(x) 의 최대값이 1이 되게 하는 x의 값이 3일때 "
이렇게 수정 해야 되지 않을까요?
왜냐하면 x=3에서 최대값 1이다 라고 하면 x=3에서 굳이 접하지 않더라도 교점만 생기면 되기때문에...
교점이 생기면 최댓값이 1이 안되지 않을까요?
papapa님의 의견이 맞습니다.
교점만 생긴다면 최댓값이 1이 아닌 경우가 얼마든지 생길 수 있습니다.
papapa님의 의견이 맞습니다.
교점만 생긴다면 최댓값이 1이 아닌 경우가 얼마든지 생길 수 있습니다.
+
x=3에서 접하지 않고 교점이 생기면 최댓값이 1이 넘어가는 경우가 생깁니다.
접하는 상황은 최댓값 1이라는 조건을 통해서 생각해야 하며,
접할 때의 x값이 3이라는 것을 통해 (x-3)^2 이라는 식을 이끌어내야 합니다.
무슨의미인지는 압니다.
그래도 말의 뉘앙스상 최대값이 1이 되게하는 X의 값이 3일때 라고 하는게 더 오해의 소지가 없다고 봅니다.
x가 3인 곳에서 반드시 접해야 한다는 상황으로 풀이를 유도 하기에는 주어진 발문이 명확하지 않다고 생각합니다.
네 발문은 하나의 의견으로 받아들이겠습니다.
발문의 애매함과는 별개로,
x=3에서 교점만 가진다면 항상 최댓값 1이 된다는 님의 지적은 틀렸습니다.
제가 쓴말을 잘못 이해 한듯요
더 자세히 적으면...
원래발문의
"x=3일때 최댓값 1 "
이 부분을 두가지로 해석할 수 있어요
1.
f+g의 최댓값이 1이고 그때의 x값은 3 이므로 두 그래프가 x=3에서 접한다.
2.
x의 값을 3으로 고정했을때 f+g의 최댓값이 1이다.
따라서 두 그래프가 x=3 에서 만난다.
이렇게 두가지 해석의 여지가 있을수 있으므로 저 부분의 발문을
" f+g의 최대값이 1이 되게 하는 x의 값이 3일때 "
로 수정한다면 2번 해석의 여지가 사라지게 되죠
이런 의미로 쓴다는게 뒷 부분을 자세히 적지 않았네요
;_;
1번으로 해석하든 2번으로 해석하든
똑같이 답을 낼 수 있죠.
2번으로 해석했을 때,
"x의 값을 3으로 고정했을때 f+g의 최댓값이 1이다.
따라서 두 그래프가 x=3 에서 만난다."
에서 그치는 것이 아니라
여기서 한단계 더 나아가야죠. -> (x-3)^2 의 형태가 되어야 한다.
x=3으로 고정했을때 f+g 최댓값이 1이 되는 순간이 바로 제곱의 형태가 되어야 하는걸 캐치해야죠;
x=3 접하지 않고, 만나기만 하는 함수 아무거나 설정해서 만들어 보시면 편해요.
만나기만 하는 함수를 설정하면 x=3에서 최댓값을 가지지 않을 것이니까요 ㅎㅎ
그게 아니라 두번째 해석은
x=3인 곳에서만 직선과 곡선을 위아래로 움직였을때 최대가 1 이라고 했으므로 만나는 상황까지만 되고 교차해서 직선이 곡선 위로 올라가지 않는다
이렇게 해석할 여지가 있다는 것이었네요