수리 굇수님들 헬프ㅠ
아 독재라서 질문받아줄 사람이 없네요 ㅠ ㅜ
바로 질문할게요
미분문제에서 미분가능성 따질때요.
도함수로 원함수예측하잖아요?? 근데 원함수의 x=a에서 미분가능성은 도함수 x=a에서 좌우극한을 따지는데요
문제는 옛날에? 신승범쌤이 수업할때 가르쳐준것중 이해가 안가는게 잇엇는데 오늘자이기출풀다가ㄴ나와서요
도함수의 x=a에서도함수의 함수값이 없을때 왜 원함수 x는 a에서 미분불가능 인가요?? 미분불가능은 좌우 극한으로만 알수잇지 않나요?? 자세히 설명좀요ㅠㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
해모 드가자 0
100 받고오겟읍니다
-
현재 고2고 강기분 끝내고 새기분을 듣고 있는데 기술 지문 들어오고 부터는 1지문당...
-
와 진짜 역겹다 0
이시점에 오르비보면서 열받아하는 제가요..
-
먹어보신 분들 후기 좀… 7일 남았는데 이런 거 새로 먹으면 좀 위험한가 아니면...
-
사문 기출 푸는데 20년 이전 기출 푸니까 왤케 이질감 드는거같지
-
옯틀딱 등장 10
ㅎㅎ
-
12월생이라 민증을 아직 발급 안 했어요 ㅠㅠ.. 원래 학생증 들고가서 보려고...
-
ㄹㅇㅋㅋ
-
초록불 6초메서 깜빡이길래 뛰어가면 1초남겼을때 반대편까지 5초만에 뛸수있는데, 꼭...
-
오늘은 몇 개나 틀릴까
-
중립임
-
ㄹㅇ 트레일러는 어케 풀지 이거보다 어렵다는데
-
아무리 장사치라 해도 그게 말이됨?
-
영어 안품 동사세사 5050 수학… 최선이다 근데 이게 ㅠㅠ
-
뭔뜻? 비판에가깝나
-
수능날 2컷 가능함? (제발)
-
2등급 실력대임? 아니 빈칸 4개 다 틀린건 처음이라 그럼 ㅋㅋㅋ
-
작년에 처음으로 한국사가 29점이 나와서... 올해는 수특 사서 큼지막한 사건들 다...
-
자...드가자 3
-
가능? 1
-
이건 아니지 않나? 인생이 걸린 시험에 오개념을 가르쳤음을 비방없이 알렸는데... 그 엔딩이야??
-
존나 극혐이네
-
소보로 !!
-
지인선 x 신성규kk 30번 저처럼 푸신 분 있나요 4
역함수 합성 후 역함수가 반드시 0을 가지는 것을 이용해서 k 구하고 계산했는데...
-
다 이유가 있었군요... 솔직히 당시에는 조금 짜증났었는데 이제는 이해할 것...
-
김승리 문자 0
나만 안오나 ㅈㄴ 안오네
-
나라 운영 과목실모침? 나라 망치기는 백분위 99긴한데
-
당근에 없네 ㅠㅡㅠ 이 촌동네.
-
저격판이 열리면 대개 재밌다는 것이다
-
캬 이제 진짜 오운완
-
오르비의 정상화
-
정석민 현강 메리트가 뭔가여 인강과 차이 주간지는 주는 걸로 알고 있는데
-
분명 공익 목적일때는 위법성이 조각된다고 알고 있는데 문득 경계가 좀 애매하지 않나...
-
캬..
-
조교도 오류 강사도 오류 평가원도 오류 사실 칸트도 자기가 무슨말 하는지 모르고...
-
강k 24회… 막 디게 어ㅓ렵단 느낌은 아니었는데 채점하니까 다 틀려있네
-
수능접고 몇년동안 안 걸리던 감기를 수능공부하니 또 걸리네
-
새끼들아
-
풀긴해야제..
-
ㅋㅋ아
-
두각 시대 수학 7
두각단과 시대단과 뭐들을까요 두각은 수강신청 걸어놓긴했어요
-
병아리 불쌍해ㅠㅠㅠㅠㅠㅠㅠㅠ
-
오개념 없는 건 5
대기범의 시간은 거꾸로 간다
-
있었으면 세지로 도망가게요
-
수학 영어는 폭망하지만 않음 되고 결국 내 대학은 국탐으로 정해지는데 국탐 잘볼...
-
※ 1등급 이상 실력자들에게 해당하는 얘깁니다. 그 아래는 곱게 기출+EBS...
-
진지하게 고려중입니다
-
다음주 이 시각 9
행복 하기를 제발 행복 하기를
-
검증된 강사 원탑 10
대 원 준
미분의전제가연속이라그런건가..
아 그런것도 같아요 .근데 문제는 x=a를 기점으로 서로 다른 함수가 주어지면 어떵게 되는지 잘 모르겟네요
x=a에서 미분가능하려면 도함수가 a에서 연속해야되는데 거기에서 함숫값이 없으면 연속이 안되니까 미분불가능한거죠
근데 미분가능의 조건이 도함수의 연속성 즉 좌 우 극한값이 모두다 같다는것인가요?? 저는 좌우 까지만 같아도 된다고 배워서요ㅠ 아 개념이 헤깔리네요ㅠ
미분이 가능하려면 연속해야 하는데, 연속하려면 좌우 극한과 극한값 3개 모두가 같아야 되죠.
그니까 결국은 미분이 가능할면 좌극한,우극한,극한값 3개가 모두 같아야 가능하다는거죠
미분의 정의자체가 연속이라는 개념을 바탕으로 하고 있어서 그렇습니다. 연속이라고해서 무조건 미분가능은 아니지만 미분이가능하면 연속이어야해요.
미분이 수식으로
lim h->0 일때 f(x+h)-f(x)/h 인데 극한값이 존재하더라도 함수값 f(x)가 존재하지 않으면 식에서 값을 구할수가 없게됩니다.
"lim h->0 일때 f(a+h)-f(a)/h 이 존재할 때"
=
"lim h->+0 일때 f(a+h)-f(a)/h 과 lim h->-0 일때 f(a+h)-f(a)/h이 같을 때"
=
"즉 평균변화유링 극한값이 존재할 때"
그 값을 f'(a)라고 약속하느 ㄴ겁니다/.
따라서 f'(a)가 없으면 미분불가능한거죠.
참고로 도함수의 연속성과 미분가능성을 연계짓고계시는데 둘은 별 상관없습니다.
"도함수의 함숫값"만이 상관있죠
그렇다면 도함수가 x=a에서의 극한값이 존재하지만 이와 함숫값 f ' (a)가 달라 불연속인 경우에도 원함수는 x=a에서 미분가능하다는 말씀이신가요?
그런 경우가 있다면 x=a에서 미분가능하다고 봐야겠지만 그런 경우는 없습니다. 즉, 도함수f ' (a)가 존재하고, f ' (x)의 극한값(x->a일때)이 존재하면, 그 두 값은 반드시 같아야 합니다. 이런 의미에서, 해원님이 도함수의 연속성과 미분가능성이 별 상관이 없다고 하였지만, 또 상당히 관련이 있기도 합니다. 어쨋거나 일반적으로 미분가능하다 해서 도함수가 연속은 아니고, 질문자님의 질문에서처럼 아예 f ' (a)가 존재하지 않는다면 그냥 그 자체로 미분불가능하다는 뜻이고, x->a일때 f ' (x)의 극한값과도 물론 아무 상관 없습니다. (아예 존재하지 않으므로)
"그런 경우가 있다면 x=a에서 미분가능하다고 봐야겠지만 그런 경우는 없습니다."
이부분은 정정이 필요할듯 합니다.
함수
f(x)=
x^2 sin(1/x^2 ) (x=0 이 아닐때) ,
0 (x=0 일때 )
이렇게 두조건 으로 정의된 함수는 x=0 에서 연속입니다. x=0 에서 미분도 가능하구요 하지만 도함수가 x=0 에서 연속은 아닙니다.
x=0 근처에서 미췬듯이 진동해나가는 그런 함수이죠.
그래서 사실 함수의 미분가능 문제를 100% 정석으로 풀려면
미분계수의정의를 이용하여 미분계수값(미분계수의 좌극한과 우극한이 같다)
로 푸는 것이 정석입니다. 그런데
대부분의 출제되는 문제들의 함수들이 도함수가 연속인 함수들이 출제가 되기 때문에
미분먼저하고 연속이다 로 푸는데 ㅅ실 그풀이는
엄밀히 말해서 제대로된 풀이는 아닙니다.
그게 아니죠.. 말씀하신 예는 유명한 것인데요, 그 경우 도함수f ' 이 x=0에서 극한값 존재하나요? 제가 말씀드린 것은, 도함수 f ' (a)가 존재할 뿐 아니라, x->a일때 f ' (x)의 극한값도 '존재'한다면 lim_{x->a} f ' (x) = f ' (a) 여야 한다는 것입니다. '도전인'님 질문을 정확히 읽어보세요. 제가 말씀 드린 것은 정리로 알려진 것이고 증명은 생각보다 쉽지 않습니다.
감사해요 ㅎㅎ 고3때도 이해가 안갓는데 개념책피고 생각해보니깐 알겟네요 ㅠㅠ제가 평균변화율을 자꾸 도함수의 기울기랑 연관지엇네요 암기교육의폐혠가?? ㅋㅋ암튼 감사해욥 수리 굇수님ㅋㅋㅋ
직관적으로 생각해보면 도함수의 함수값은 그 점 에서의 원함수의 평균변화율의 극한값인 겁니다. 그 점에서 도함수가 함수값을 가진다면 그점에서 원함수의 평균변화율의 극한값이 존재한다는 말이므로 당연히 미분가능하게 되는거죠.
x=a에서 도함수의 함숫값이 없다는게
x=a에서 원함수가 미분계수가 없다는 뜻이죠
그러니까 미분불가능한거임
너무 어렵게 생각하시는 듯
그러니까 x=a에서의 도함수의 함숫값은 그냥 원함수의 x=a에서의 미분계수를 나타낼 뿐입니다
당연히 도함수의 함숫값이 없으면 미분계수자체가 없다는소리니까 미분이 불가능하죠