미분을 하는 이유
안녕하세요.
수학강사 이승효입니다.
오늘의 주제는,, "미분을 뭐하러 해?"
먼저 아래 문제를 봐주세요. 이번 9월 모평 가형 18번입니다.
나형 학생도 풀수 있는 문제입니다.
나형이라면 '호옹~ 우리가 풀수 있는 문제도 가형에 나오다니,,'
가형은 '어라, 문제가 좀 다른데?' 라는 생각이 들지요?
네, 가형은 아시겠지만
문제에 출제된 f(x)는 저런 형태였지요?
(나형 학생들도 좌절하지 말고 끝까지 읽어보면 도움이 될거에요. ^^)
그런데 처음 함수처럼 f(x)가 쉬운 형태(다항함수)로 나오더라도,
이 문제의 해결전략이나 풀이방법은 전혀 달라지지 않습니다.
여기서 우리가 알아야 할 것은
평가원에서 함수추론 문제를 만드는 방식
이에요.
평가원에서는 종종 복잡한 (또는 복잡해 보이는) 함수의 식을 던져주곤 합니다.
수학 고정 1등급의 고인물수라면
'나에게 어떤 함수를 던져주더라도 전부 미분해 버리겠어
(심지어 두번미분)'
라는 마인드로 함수를 탈탈 털어버린 다음에
그걸 이용해서 문제를 풀어도 시간이 모자라지 않겠죠.
그렇지만 평가원 문제 중에서
오로지 식으로만 풀어야 하는 일부를 제외한 대부분의 함수 문제는
복잡한 함수를
"같은 성질을 가진 매우 쉬운 함수"로 치환하더라도
같은 방식으로 풀리도록 문제가 성립합니다.
왜 이런 현상이 벌어질까요?
문제를 제작한 경험이 있는 분들은 잘 알고 계실겁니다.
문제를 만들때, 밑도 끝도 없이 복잡한 함수 식부터 세우고
문제를 만드는 것이 아니라
1. 특정한 교과서 개념을 확인할 수 있는 상황을 설정하고
2. 그 상황에 적합한 함수 식을 만든 다음
3. 만약 문제의 난이도를 올리고 싶으면
같은 성질을 갖는 좀 더 복잡한 함수로 업그레이드 한다.
이런 식으로 문제를 만드는 것이 일반적이기 때문이에요.
즉, 이렇게 복잡해 보이는 함수 문제에서 중요한 것은
1. 함수의 중요한 성질을 빨리 캐치한다.
2. 쉬운 함수로 바꿔서 그래프의 개형을 추론한다.
3. 개형을 이용하여 문제를 아주 쉽게 푼다.
인 것입니다.
이러한 원리는 이번 18번에만 활용되는 것이 아니라
평가원 기출에서 폭넓게 활용되고 있답니다.
기출분석이 끝나고 암기까지 된 학생이라면
이번 f(x)안에 있는 로그함수와 이를 이용한 g(x)의 정의가
2018학년도 6평 30번의 재활용이라는 걸 바로 캐치해냈을거에요.
주어진 함수의 중요한 성질(대칭성, 아래로 볼록)만 파악해서
f(x)를 2차함수로 바꿔 버리면 쉬운 수학2 문제로 바꿀 수 있죠.
다시 원래의 질문으로 돌아가서 글을 마치려 합니다.
미분을 뭐하러 해?
미분은 함수의 성질을 모르니까 한다.
예를 들어, 3차함수의 식만 보면 이 함수가 극점을 갖는지 안갖는지
어디서 증가하고 감소하는지 알수가 없죠.
즉, 숨은 성질을 찾는 함수의 해석도구가 미분인 것입니다.
이번 18번 문제에서 주어진 함수는
1. 원점을 지나고 양수구간에서 증가하는 함수이다.
2. 구간 (0,1)에서 함수는 1보다 작다
-> 10제곱하면 미친듯이 더 작아진다.
라는 두 가지 성질을
미분이라는 도구 없이도 충분히 찾아 낼수 있습니다.
미분의 꿀팁 중 하나는, 신기하게도,
미분을 쓰지 않는 것이에요. (!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
심심해
-
오르비분들 답 맞추시는거 보니까 수리 3문제 다 맞은것같은데 인문 ㅍㅌㅊ로 썼으면...
-
커뮤에서만큼은 진실한 사람이고 싶음뇨
-
2개 다 사는게 좋나요 ? 차이가 머죠
-
히히
-
질병결석이나 세특내용도 보나요?
-
언미 생윤사문 11212 나왔는데 약대 목표로 사반수 오바인가..? 삼수 했으면 걍...
-
스토리보니까 한양대 가셨네 언제가신거지 ㅇㅅㅇ...!?!?!!????
-
하...진짜 딱 그정도면 만족하는데
-
제발 그래야해
-
지1 인강추천좀 4
올해 오지훈들어서 박선,이훈식중에 생각중인데 뭐들을까요
-
충북대 통합 0
충북대가 교통대랕 통합되면 충북대로 입학한 사람인게 나중에 취업할때 나타나나요?...
-
향수 1
스테이시 틴프레시 쓰는데 ㅁㅌㅊ? 아이돌 스테이시 꺼임
-
관악이 가고싶구나
-
내 첫 향수였는데.. ㅋㅋㅋㅋ 추억이네
-
성적표 뜨고 예약할지 말지 정하고 싶은데 성적표 전에 예약받는거같아서..
-
나 너무 멋진 센빠이 10
수능 수고했다고 후배 선물도 사주고 히히 나 좀 멋져!
-
오노추 1
힐링노래 2곡
-
페브리즈 ㅇㅇ
-
오랜만에 향수뿌리겟다 17
이거 진짜 1년 넘은 듯
-
뱀이랑 고라니가 나옴...너구리도 나왔다는데...... 사실 이것보다 무서운건 학교 올라가는 계단임
-
1. 저 2026 수능 정병호T 아니면 김범준T 커리 탈라는데 올해 수능 때 들었던...
-
쿠팡 알바 후기 8
쿠팡 캠프인가 암튼 거기가서 소분하는 알바를 하게됨 처음해봐서그런가 존나...
-
누구인지 확인하려했는데
-
수1은 2회독했고 수2는 1회독했습니다 둘다 잘은 모르는 상태 개념만 했어여...
-
보통 탄신일이라 할 텐데...
-
속보)민주당 이재명 대표 ‘위증교사 혐의 무죄’ 선고 0
현재까지 전과 5범(진) 공직선거법위반 1심 징역1년&집유2년 -> 내년 중반...
-
a형 b형 다 어려웠음? 전 b형인데 계산 빡세던데
-
돈이없네 ㅠㅠ 컴활준비 드가자
-
유격 끝나니까 수능 이미 봤다네 나도 수능 보고 유격 좀 뺄껄 ㅋㅋ
-
만원 쿠폰 썼어요 ㄴㅇㅅ 근데 요즘은 배달비가 거의 오천원이네요 ㄷㄷ 인절미 빙수랑...
-
가끔 너구리 나옴뇨 진짜라는거임뇨 담배피러 나왓다가 호다닥 도망간다는거임뇨
-
키빼몸 104.5 14
ㅁㅌㅊ
-
작수 48 백분위 98% 올해 47 메가 예측 98% 나왔어요 17제외하고 다풀고...
-
도태남이 되버림뇨...
-
수특 수완 연계 체감 어땠나요?
-
회기가는중 17
근데약속시간까지너무오래남았다 2시간동안뭐하지
-
대학은 메디컬 설대 연세대 시립대, 나머지 명문대 라인 과는 공대 아니면 경제학과...
-
키빼몸 100 되는거 생각보다 너무 빡세다. 20대 초반에는 몸무게 고점이 키빼몸...
-
언매 미적 지구 사탐 1 어떰 제발 제발 알려죠 제발 진짜!!!!!!!!!
-
박선쌤 현강에서 받은 자료들입니다. 서바이벌전국, 데이브레이크 등등 있습니다....
-
인하대 안정박고 홍대인자전 경희대 지를라하는데 ..
-
운전면허 따는거 6
돈 많이 들어요? 운전학원 몇시간 필수 이런거 있다고 들은것같은데
-
초등 교육부 선정 800개 + 워마 중등 3권 + 워마 고등2권
-
기록 보니까 싱겁게 끝났구만
-
"진실되게 투표한자는 올해 원하는 곳 갑니다..." 수능 현장에서 생명과학1 응시한...
-
집도착 3
얼버잠 오야스미
-
그건 사실이라는 거임뇨
-
핸드폰으로는 안되나요?? 여행 중이라 pc로 확인하기가 어려울거 같은데..
함수를 바꾸는게 문돌이한테도 해당사항이 있을까요..? 어차피 해봣자 3차 4차일텐데
문과라면 ‘함수를 바꾼다’라기 보다는, 복잡한 상황이 나왔을때 ‘이 함수의 그래프는 분명히 쉬운 개형 - 기출에서 본적이 있는’라고 생각해 보면서 그래프의 개형을 그려보면서 접근하는게 좋아요. 칼럼의 포인트는 ‘평가원이 문제를 만드는 방식’을 생각하면 반드시 쉽게 풀릴것이다, 라는 것이에요. 시험장에서는 어렵지만 해설강의를 듣고 나면 쉽게 느껴지는 것이 그러한 이유입니다. 힘내요~
음..기출에서 본적있다 함은 뭐,,절댓값 함수 미분가능하면 중근 뭐 이런걸까요? 그걸로 복잡한거에서 중근 찾아서 빼고 이런식으로 하는건가..잘 감이 안잡히네요
나형 버전 칼럼은 나중에 따로 올려볼게요~
넵 감사합니다 !!
첨보는 칼럼인데 ㄹㅇ 도움되네요.... 문제내는 원리에서 근거가 있군요