포카칩모의 A형 후기와 함께 드는 생각( 주의 : 어그로성이 강함..+ 스포)
현역 고3 문과고요, 언어, 외국어를 못하면 수학이라도 잘해야제! 라는 생각으로 오늘 시험에 임했네요.(어차피 수시 등급 맞추는게 목표라서..)
학원갔다오니 10시 20분이 넘어서;; 결국 온라인으로 채점하진 못했지만 A형 답게 노가다를 열심히하면서 풀었네요. 이 점수가 6평, 9평, 수능때도 유지되면 참 꿈만 같겠네요..
전체적으로 작년 수능보다 어려웠던 것 같습니다. 30번 같은 경우에는 행렬로 발견적 추론 문제가 나올줄은 몰랐네요(발견적 추론 맞죠?)
1,2,3,4 : 첫 장답게 실수만 하지말자는 생각... 이번엔 안해서 다행이네요
6번 : 이런 유형자체는 익숙한데 표현은 참신했네요 다들 쉽게 풀었을 것 같네요
9번 : 시간재고 푸는 형식이라 더 깔끔한 풀이가 있을 것 같은데.. 전 걍 계산 조금 해서 쉽게 풀었습니다.
10번 : 무한등비급수를 안한지 오래되서 마름모 꼴 보고 반가웠음(진짜 오랜만에 본 듯) 초항은 쉽게 구했는데 공비를 어케구하지라고 잠시 고민하다가 삼각
형 넓이로 풀었네요. 다른분들은 어떻게 푸셨는지 궁금..
13번 : 눈으로도 풀 수 있을 것 같기는 한데 그냥 계산했어요
14번 : n=2를 기준으로 변한다는 사실만 캐치한다면 쉽게 풀리는 문제였죠.
15번 : 순서도가 나올 줄은 몰랐습니다.( 물론 기출 풀 때 6평엔 간간이 있긴했던거같은데.) 22^2 +1이 나오더라고요.
16번 : 전형적인 행렬 ㄱㄴㄷ 문제.. 항상 살 떨리게 풉니다
17번 : 예비시행 증명문제처럼 행렬과 수열의 결합이 나왔네요. 아무래도 이번 수능 역시 행렬과 수열의 결합이 문제로 나올 것으로 포카칩님이 생각하신 것 같네요
19번 : 한석원 쌤 크포에 있던거랑 비슷해서 쉽게 풀었네요.
20번 : ㄷ선지가 참신했습니다.
21번 : 역시 21번은 미분이죠, f(x) 개형그리고 g(x)를 이리저리 돌리다보면 접점에서의 기울기가 최대임을 알 수 있습니다.
26번 : 2012 수능이었나 그 때도 이런 쉬운문제가 4점이었던 적이 있었죠..
27번 : 처음엔 직관풀이에 도전했는데(휘종찡..) 내공이 약한건지 잘 생각이 안 나서 계산했어요...아 ㅠ
28번 : 아 오늘의 A형 킬러 중 하나였습니다. 처음엔 당황스러웠는데 우선 n=2 를 대입해서 a1을 구하고 시그마를 풀어보니 느낌이와서 Sn을 구할 수 있었네요.
29번 : 지표와 가수 역시 6평에 자주나오는 소재인걸로 아는데 맞는지는 모르겠네요. n이 한자리 수일때는 다되고 n이 두 자리 수 일때는 n>= 40 부터 다 됩니다.(99까지)
30번 : 문제보자마자 당황스러웠네요. 행렬로 발견적 추론이라니.. 일단 노가다를 뛰어보자라는 생각으로 적어나갔는데 처음엔 계속 적어나가도 안보였는데 어쩌다보니 홀,짝 규칙성이 보여서 갯수세는거에만 주의해서 가까스로 풀었네요.
온라인 모의에 못넣어서 아쉽지만..(그래서 긴장이 덜되서 잘 푼 것 같아요) 그래도 오늘 하루는 저한테 칭찬을 해주고픔.. ㅠ (수학이라도 잘해야지...)
그리고 또 느낀건 문제를 푸는 능력과 만드는 능력은 분명히 다르다는것... 진짜 문제 하나하나 어떻게 만드시는지 정말 멋있어 보이네요... 문제 만들 때 어떻게 아이디어를 생각해내시는지 정말 대단하다고 느꼈습니다. 포카칩 짱짱맨ㅎㅎ 좋은 문제 풀어서 6평대비 좋게 한 것 같습니다. 다들 좋은 밤 되세요.
P.S 이글 보시고 기분 나쁘실 분들도 계실거에요... 저도 처음부터 수학을 잘 하지는 못했어요(고1 3월 3등급) 그 이후에 다른과목 공부량을 줄여가면서 수학을 열심히 하다보니 이과로 가서 잘 할 정도는 아니어도 문과에서 못한다는 소리는 안듣는 수준까지는 올라왔어요.. 다들 열심히해서 모두 만점받았으면 좋겠어요.ㅎ (저도 같이 ㅎ )
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
물1러들 도망챠…
-
옯 레어 갖고싶다 10
덕코주세요...
-
중앙대나 한양대 12
1학년이 반수하기에 편함? 1-2휴학가능여부나 등등..
-
저도 질받할래요 33
선넘질받도가능하다네요 안해주면혼자방에서울거에요...
-
영어 1컷은 90입니다 15
그렇습니다
-
그래서 컷이 오른거라네요
-
11월 22일 6
솔텍 N제 파트2 좋네요. 과한 문제도 없고 쉬운 문제도 없고...선지 논리...
-
ㄹㅇㅋㅋ
-
생명 지구 컷만 1
오르지마 좀만 내려오면 더 좋고
-
수학 등급컷 논쟁 19
쓴소리 참고 84도 가능합니다 하는 성격이면 과외 오래 할 확률이 높아요 ㅋㅋ
-
할거 없는데 쎈이라도 풀어볼까
-
집가는 동안 무물보 12
안 해주면 삐짐
-
ㅇㅈ 1
-
모두 굿밤
-
난 도저히 못 보겠던데 10
ㅍㄹ<--취존불가
-
지금 이 헬조선에서 미국으로 뜰수 있다는게 미친 메리트 잖음
-
그냥 순수한 궁금증
-
나도 행복할수잇었을텐데
-
학종 1
생명쪽 학종쓸거면 공동교육과정 들으면 좋겠죠??
-
흠
-
편입 현실 조언 부탁드립니다. 아무말씀 이여도 좋습니다 1
저는 이번년도 2월1일까지 군대에서 수능준비를 하다 포기하고 전문대에 들어왔습니다....
-
진학사대로만 주세요 85 2컷이라도 제발 하
-
노래추천받 15
사랑노래 빼고 잔잔쓰한 느낌으루...
-
고1 통과 때 너무 재미없어서 '아! 지구는 내 길이 아니구나!' 싶었는데 그냥...
-
애니보기.
-
행복하기를 바라는거는 주제넘은 바램이 아니였을까
-
어차피 남들보다 뒤쳐진거 미련 없도록 한번 더하자 에라 모르겠다 학벌은평생남는다니깐...
-
기말 시험이 12월 6일에 끝나는데 언제부터 수능 공부를 시작할까요?? 제일 늦게...
-
여러분들 지금 최근 글들에 댓글이 거의 없다는 사실, 아시나요? 20
다들 따뜻한 마음으로 댓글을 달아주는 청년이 되길 바랍니다 그럼 2만 총총..
-
막장애니 볼건데 5
기대되네 반전이 얼마나 많을지.......
-
집가기 겁나 피곤하다 12
누가 나 납치해서 데려다 줬으면..
-
진짜 손절하고싶다 11
진심 손절하고싶음... 아 진심 역겨워 미쳐버리겠음
-
푼 컨텐츠 후기 글이나 무물보로 공부 꿀팁같은거 작성하신 분들 있으면 공유부탁드립니다!
-
ㄷㄷㄷ
-
수1,2,확통 실력 다 비슷하고 7일 공부량으로 따졌을 때 3일은 수1, 3일은...
-
아예 의미가 없나요…? 3-4칸 떨어진다고 그러던데 그럼 전 지금…제가 7~8칸...
-
통통이고 이번 수능 14, 21 틀 입니당. 겨울에 시대인재가 아닌 타 선생님의...
-
게임 존나 좌우하는데 병신만 잡힘
-
전 심심하니 질문해드림 101
댓 남기면 질문 해드릴게용
-
저 때문에 칸타타님 끌올된거 같아서... 죄송합니다
-
98주면안되냐고 ㅜㅜ
-
으아악
-
운동2시간완뇨 0
존나힘드네 ㄹㅇ 근데재밌음 저녁샐러드 달걀 단백질파우던가 뭔가 먹음 냠냠
-
왤케 투데이 높음
-
수학 가채하다가 한개 더 틀림거 같아서ㅋㅋㅋㅋㅋㅋㅋㅋㅋ아효 죽고싶네요..누가...
-
미적1 수학인강 5
올해 88(28,29,30틀) 인데 재수할 생각입니다 김범준 선생님 대성 런칭...
-
부거 먹고싶다 18
내일 머글까
-
질문 받습니다 9
없으면 좀 서운함
-
진학사 기준 연대식 710점 정도 나오네요.. 지금 진학사 컷으로는 잘 모르는거겠죠..?
허허.. 겸손하시네요. 언어랑 외국어도 충분히 잘하시는걸로 알고있는데 말이죠.
그렇게 말씀하시면 저는 ㅠㅠ
국어는 평가원것만치면 2~3등급나오네요.. 기출풀면 ㅠ
15번 해설좀 해주실래요? 15번만 계속 못푸네여ㅠㅠ
B=23?일 때 예로써 끝나야하는 A를 찾는것이 목표입니다. 이 때 순서도를 잘 해석해야하는데요.. B= 23이려면 B= 22일 때 B^2= A일 때 B =23 이 됩니다. 즉 A = 484(22^2)이면 B^2= A이므로 B가 1 더해져서 23이 최초로 됩니다. 그러면 23^2> 22^2이므로 예로 가서 A= A+1 이 되어 484 +1 =485가 인쇄됩니다. ㅂ ㅅ 같이 쓴거같아서 요약하자면
묻는것이 B=23?이므로 B가 23이 될 때를 주의해야하는데 이 때 B=23이기 위해선 B=22일 때 B^2= A가 되어야지 B가 1 더해져서 23이 됩니다. 그 이후에는 23^2 > 22^2 이므로 A= 22^2 +1이되어 485가 됩니다. 글로 쓰는지라 설명이 빈약해서 죄송합니다 ㅠㅠ
484까지 밖에 안나와서 뭐가 문젠가 했더니 이거였네요ㅋㅋㅋ 감사합니다!
28번 어케푸나여? 저거 아무리해도 안나오던데 n이 2부터 시작하는건가여?
n=1을 대입하면 어떤정보도 얻을 수 없어서 n=2를 대입해보면 됩니다. 그러면 a1을 알게되지요.
21번좀알려주세요!
f(t)와g(t) 중에서 크지 않은 값을 h(t)로 정의했는데 이 함수가 한 점에서만 미분가능하지 않도록하는 a의 최댓값이 얼마인지가 문제에서 묻는 건데요 우선 f(x)를 그릴 수 있지요? 그러면 그려봅니다. 그리고 g(x) =ax이므로 우리가 그릴 수 있는 그래프니깐 일단 아무데나 그려봅니다. a를 점점 크게해서 그려보면 어느순간에 f(x)와 g(x)가 접하게 되는데요 처음 만나는 점 이전의 x좌표에서는 g(x)가 더큰데 그 점에서 역전되므로 그 곳에서 미분이 불가능합니다.(실제로 계산해도 알 수 있습니다.) 또 다시 만나는 점은 접점이므로 그 곳에서는 f(x)>g(x)임이 변함이없고 미분도 가능합니다. 만약 a가 더커져서 세 점에서 만나게 되면 미분 불가능한 점이 한 점이 아니고 두 점 이상이 나오기 때문에 a가 딱 접선이 되어야합니다.
말을 너무 바보같이 했네요. 요약해보면
1. f(x), g(x)를 그린다.
2. 변수인 a를 점점 크게해보면서 변화를 살펴본다.
3. g(x)가 f(x)에 접할 때 a가 최대이면서 미분불가능한 점이 1개이다.