단위원과 삼각함수
일단 저는 지방에 사는 멈충이로 단위원에 대한 수업은 들어본 적 없습니다,
다른 학생들이 배운 어둠의 스킬이 뭔지도 잘 모릅니다;; 그냥 이에 대한 제 생각을 쭉 나열할 뿐이고요.
더 심화된 내용이 있다면 누가 올려줬으면 합니다 ㅎ 저도 알고 싶어요..
이에 대해 개인적인 생각은 아래에 있음
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
일단 단위원에 대해 봐봅시다.
학습한 바로는 반지름의 길이가 1인 단위원을 설정했을 때
사인, 코사인, 탄젠트 값은 그림과 같습니다.
x=cos theta
y=sin theta
원점 기울기= tan theta
삼각함수처럼 볼 때 유의할 점은 정의역 세타가 x축 위에 있지 않다는 것입니다.
저희가 보통 함수로 나타낼 때 x축 위에 정의역을, y축 위에 치역을 둬 나타내지만
지금 단위원의 경우 정의역에 속하는 theta값이 원의 동경 상에 있습니다. 낯설 수 있으니 의식적으로 각인합시다.
이를 함수로 나타낼 때 정의역 theta를 x축으로 그려낸 것이 삼각함수입니다.
둘은 사실상 "표현 방식"이 시각적으로 다를 뿐 다루고 있는 내용은 같습니다.
예를 들어 삼각방정식을 풀어봅시다. (범위는 0 2pi로)
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
(1)사인함수
보통은 삼각함수를 통해 theta값을 구할 것입니다. 왜냐면 x축이 그대로 theta거든요.
한편, 다르게 생각할 수도 있습니다.
단위원에서 y값이 사인값임을 유념할 때, 그리고 이때 이루는 동경이 theta임을 고려할 때 저 각들을 구하면 근을 구할 수 있습니다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
(2) 코사인 함수
삼각함수를 이용하면 x축 값이 그대로 근이기 때문에 교점의 x좌표를 구하면 됩니다.
한편 단위원의 경우 x좌표가 코사인값이라는 것을 유념하고, 동경이 theta를 나타냄을 고려하면 저 각을 구하면 됩니다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
(3) 탄젠트 함수
삼각함수를 이용하면 x축이 그대로 theta고 근이기에 교점의 x좌표를 구하면 됩니다.
한편, 단위원을 이용하면 기울기가 탄젠트 값임을 유념하고, 동경이 theta임을 고려하면 저 각을 통해 근을 구할 수 있습니다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
어느 쪽으로 푸나 별문제는 없습니다. 다루고 있는 내용이 다르진 않거든요.
여기서 주목할 점은 "표현 방식이 다르다"인데요 이차함수를 일반형으로 나타내는 지 특수형으로 나타내는 지 정도의 차이라고 생각합니다. 근본적으로 다를 것은 없습니다. 만약 축의 좌표를 알고 싶다면 특수형으로 나타내는 것이고 y절편을 알고 싶다면 일반형으로 나타내는 것입니다. 목적에 따라 두 개를 달리 쓰면 편의를 얻을 수 있다는 거죠.
제가 생각하기에 삼각함수 그래프의 문제는 "그리기"입니다. 구간이 길어지면 너무 많은 주기를 그려야하고 그림도 곡선이다 보니 그리 엄밀하지 못합니다. 또 각을 n배 하면 그리기가 더 어려워집니다.
이에 반해 단위원은 단순한 '방정식'에 대해 생각의 부하를 덜 수 있게 되죠.
원을 빙글빙글 돌면 되니 그래프를 계속 그릴 필요가 없어요. 이상한 구불구불한 함수도 안 그려도 되고
+) sinx+cosx=sqrt2를 삼각함수를 그려서 푼다고 해봅시다... 둘다 1/sqrt2 일 때가 있겠다고 생각할 순 있는데 다른 근의 여부는? 그래프를 그리자니 머리가 복잡해집니다.
단위원 방식으로 가면 sin theta =y cos theta =x 그리고 두 개 제곱이 1임을 원의 방정식처럼 생각해 (단위원)
근이 한 개 밖에 없음을 확인할 수 있습니다.(일반각에 대하여)
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
근데 사실 수1 단원이 "삼각함수" 이기에 단위원만을 이용해 풀 수 있는 문제는 나오지 않을 것 같고 필수 사항도 아니라 생각합니다. 삼각함수의 주된 특징인 [대칭성과 주기& 이에 대한 점대칭성, 선대칭성]에 집중하면 어느 문제든 개념이 부족해 틀리는 일은 없을 겁니다. '삼각방정식'을 풀 때 한 번쯤 고려해볼만 요소?지 않을까 싶습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
중앙대 합격생을 위한 노크선배 꿀팁 ['중앙대학교 내부 장학금' 꿀팁] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
나도 작년까지는 과외로 돈 많이 벌어서 좀 글킨 한데 그냥 학부모님들 잘 모르는 거...
-
8일이후 바꿀수있다던데
-
상승곡선?질문 1
1학기_2.0/2학기_2.0 2학년 1학기_1.0/2학기_1.0 VS 1학년...
-
뭔일이다뇨 2
-
왜냐하면 미점공 추합자나 군외 혹은 기타 사유로 인한 예상하지 못한 추합이 제일...
-
내 니지카
-
16센치 피아노 도-도임 남자 중에 나보다 손 작은 사람 못봄ㅇㅇ
-
ㅈㄱㄴ
-
12년생. 나보다 훨 잘함
-
진짜임뇨
-
과외 가능실력 5
미적 99 아주공대 과외 ㄱㄴ한가요
-
나 경상대인데 내가 젤 대학 낮은듯 ㅠㅠ
-
발이 300임 2
진짜임
-
생기면 어케될까요
-
이 되고싶네
-
반수 못하고 등록금 저렴하고 인기과 to 많다는 가정하에 참고로 백령도 위치
-
평가원 #~#
-
키가 340임 6
어캄
-
냄새 다퍼지네 쩝
-
계속 사랑받는지 확인받으려고 하고 집착하고 버림받을까봐 불안해하고 우울증 동반되고...
-
노래 잘하는 사람보면 그렇게 멋있을수가 없음ㅋㅋㅋ +목소리 좋은사람
-
얼굴 하얘지는 거 여드름 흉터 제거 이런 것도 막 되나요
-
자퇴현역 근황1 5
강기분 언매 공부중
-
사람 아니야ㅠ 밖에 생각이 안남
-
그때면 정리됐겠지
-
이번에는 문과/이과 비슷한 평백으로 한의대 컷이 형성된 것 같은데 이번에 사탐런이...
-
다군 15명 모집 예비 15번 가능할까요 ㅠ
-
의공학 또는 인공지능 진학에는 생명 보던 지구가 나을까요?
-
환불하고 추합 학교 등록하는 거죠?
-
에혀 2
잠이나잔다
-
헌혈을 아무리 해도 20
바늘 꼽는 그 순간은 무섭네요
-
뭔진 모르겠지만 0
눈팅만 해야할것같네요..중립기어
-
제 디시콘 ㅇㅈ 2
-
틈새 ㅇㅈ 6
-
숭실 vs 아주 3
현재 청주 거주중입니다
-
고수들 다 성불하거나 사탐런 해서 이제 작년정도 난이도에 컷은 낮아질듯 아싸
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
음음 역시유용하군
-
수능악귀 결과 4
반수생 ㅁㅌㅊ?
-
지금까지는 줄곧 화작 문학 독서 순으로 했는데 화작에서 언매로 바꿨고 독서를...
-
뭔진 몰라도 상황이..
-
이게 대체 뭐임 2
오르비 무섭노
-
ㄹㅇ
-
무슨일이고 0
???
![](https://s3.orbi.kr/data/emoticons/oribi_animated/016.gif)
인강러 입니다![](https://s3.orbi.kr/data/emoticons/dangi/032.png)
개추![](https://s3.orbi.kr/data/emoticons/oribi_animated/016.gif)
이미 아시는 내용일텐데..칼럼추
![](https://s3.orbi.kr/data/emoticons/dangi/032.png)
정보글은 늘 추천Sqrt2이 먼가요
수식판에 루트를 sqrt라고 씁니다
감사합니다
squared root입니다
n제곱근 중 n=2일 때를 말하며, 이는 (2)제곱이 영어로 squared이기 때문이에요
감사합니다
![](https://s3.orbi.kr/data/emoticons/rabong/018.png)
읽어주셔서 감사합니다sinx+cosx=sqrt2 이거 푸는 건 좀 놀랍네요 잘 배워갑니다
내신 느낌이라 그럴 거에요 ㅎ
와 ㅋㅋㅋㅋㅋ 그래프에 낑낑대던 나.. 이러면 이번 시험 점수가 달라질지도
![](https://s3.orbi.kr/data/emoticons/rabong/020.png)
좋은 칼럼추!아 뭔가 했더니 강호길T가 그래프나 데생하면서 푸는 거 아니라고 원 그려서 보여주신 발상이네요. 고1 때 원의 방정식, 코시-슈바르츠 부등식을 배울 때 그림으로 ax+by=k꼴로 직선과 원점과의 거리 관계로 표현할 수 있는 걸 일반화한 거군요. 모르는 암흑의 기술인 줄
좋은글추
제곱하면 뚝딱나오는데....
2sinxcosx = 2sinx는 이과만 할 수 있다구욧!
sin 2x...
이런..
Polar coordinate 가생각나네염