수능 수학의 정도. [필연성] (2015 6월 평가원 30번)
제가 올렸던 필연성에 관한 글들이 약간은 추상적이여서 좀 더 구체적으로 어떤게 필연성을 느끼면서 기
출을 공부하는 것인지에 관해 글을 올리게됬습니다.
필연성이 무엇인지 교과서의 도구화란 무엇인지를 2015 6평 30 번을 예로써 한 번 같이 보겠습니다
우선 이 문제에 관한 해설들이 처음 올라왔을 때 대부분의 풀이가 모두 기울기를 왜 조사한건지에 관한
설명없이 바로 기울기가 [3,4] [5,6] 구간에서 각각 1 ,3이니 평균값정리에 의하여 직선밖에 될 수 없다는
식으로 되어 있었다. 하지만 이 문제의 근본적인 물음은 그 기울기를 왜 조사하려 했는지에 있다.
대부분의 수학을 좀 잘 한다는 학생들 혹은 선생님들은 모두가 수학적 직관력과 감각이 이미 보통의 수험
생들 보다는 높고 그들은 보자마자 그냥 바로 기울기가 1 ,3 인걸 눈치 챘을 것이다.
다만, 왜 조사했는지 물어보면 명확한 답을 할 수 있는 사람은 드물것이다. 그렇다면 당신은??
당신이 저런 사람들과 항상 같은 부류라고 단정지을 수 있는가?? 수능 당일 날 저 기울기를 조사할 생각
을 필연적으로 할 수 있겠는가??
우리는 다름을 인정해야 한다. 다른 이들의 수학적 직관력과 감이 우리에게도 있을 거라는 막연한 기대로
부터 벗어나서 필연의 길을 따라갈수 있어야 한다.
이 문제를 바르게 정독하고 필연적으로 푼다는게 무엇일지 같이 보도록 해보자.
우선, 첫 줄을 읽고 함수 f(x)는 실수 전체의 집합에서 미분이 가능하다. 아 !! 첩점이 없는 부드러운 함수
겠거니 생각한다 . (이런 사소한 생각 조차 하기 싫어해서 이런 조건들을 그냥 넘기는 자들이 있는데 이
시점에서부터 이미 필연의 길을 얼마나 따를 준비가 되있는지와 그렇지 않은지가 보인다. 킬러를 대하는
태도에서부터 이미 차이가 나는 것이다.)
그 다음 (가) 조건 부터 쭉 봤더니 아직은 잘 모르겠다. 조건을 봤다면 이제 가장 중요한 문제의 목표 즉,
문제가 묻는 것이 무엇인지를 봤다. fx를 적분구간 3에서 6까지를 정적분하는게 구하고자 하는 것이다.
그렇다면 f(x)를 추론 해야하는데 식으로 할까 ? 그래프로 할까? 조건들을 봤을때 하물며 f(x)가 다항함수
인지 초월함수인지도 모르는데 식으로 가는건 아니라고 판단이 들고 당연히 그래프로 추론할 생각이들게
된다. 이때 (가),(다)조건으로는 너무 막연하므로 정수엣의 격자점을 알려준 (나)조건을 이용해서 우선 접
근을 해야겠다는 생각이든다. (정수에서의 격자점을 알려준 이 조건은 평가원에서 흔히 쓰는 이산적 코드
를 섞어 놓은 것 뿐이다. 굳이 격자점 좌표를 주면 될걸 뭐 이리 어렵게 표현하느냐 할 수 있겠지만 이렇
게 표현함으로써 문제를 좀 더 복잡하게 보이게끔 괸히 겁먹게하는 효과도 있는것 같다. 결국 별거 아니
지만..) (나)조건을 이용해서 격자점을 모두 찍었다면 이제, 남은 구간에서 f(x)의 그래프를 어떻게 추론
할 수 있을지 생각하게 되고 남은 조건들로는 바로 fx 개형이 생각나지 않는게 당연하다. 그렇다면 생각해
보는것이다. 분명 f(x)가 미분이 가능한 부드러운 함수였고 증가 함수인건 아니깐 증가하면서 부드러운
함수를 저 격자점을 지나도록 임의로 그려본다.
이렇게 그리기만 하면 f(x)가 되는것인가?? NO ! 문제에서는 분명 (가) 조건인 f'(x)가 1이상 3이하 라는
조건을 만족 한다고 되어있다. 그렇다면 막 그린 f(x) 함수가 (가) 조건을 만족하는걸 보이기 위한 판단의
기준이 있어야 할 것 같다는 생각이 들고 그 판단의 기준이 무엇일지를 주어진 조건 즉, f(x)의 격자점의
좌표와 연결 짓는다면 우리가 배운 도구중에서 함수위의 정해진 정점과 도함수에 관한 도구들이 떠오르
게 된다.(이것이 교과서 개념의 도구화) 롤?? 평균값?? 중간값?? 그중에 지금 사용해야할 도구는 평균값
의 정리라는걸 알 수 있고 그렇다면 이제 두 정점사이의 기울기를 필연적으로 살피게 된다. 그 후 그 부분
이 직선밖에 될 수 없음을 추론 할 수있다. (이하의 풀이는 생략.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://youtu.be/1fhts-E9lzs?si=1s4sh_wVT5GgXI8...
-
이건 혹시 동생분께 전수받은건가요?
-
하루에 3강 하고 나간부분 수분감까지 푼다고 하면 먗시간 정도 걸리고 이정도면 몇달 안에 끝남?
-
무조건 이거보다 훨 떨어지겟죠
-
서울대 컷 참고 1
23 때 설의 416 설치 410 설컴 408 이 정도 됐을 거임 투과목 뻥튀기...
-
한 2년 전에 공부 안 했을 때 900초 나왔는데 이번에는 공부해서 만점 목표임다...
-
입대해서 이제 공부할 짬이 차서 잘모릅니다.. 친구 말론 사탐+과탐 한다던데 이게...
-
설의택도없네 2
진학사가 짠거라도 해도 못 간다... 잘보지도 못한 원과목으로 설의를 갈 수 잇을리가 없지...
-
2025 조정식 vocabulary 2026판으로 새로 나올까요? 그리고 이 책 후기 좀
-
얼버기 2
-
23수능 24수능 평균 23 표편 13이면 23수능 지2정도인데 빨리 탈출해야겠네여...
-
뭐가 다 맞을 확률이 높을까.. 하 진짜 스트레스 받네
-
등급컷 나오는게 마지막에 사람 주관이 들어가는 건가요? 미리 만들어둔 보정 공식에...
-
뉴스에 안뜬게 신기하네 ㅈㄴ 얼탱~
-
시간 빠르다 …
-
귀염둥이, 바람둥이, 막내둥이 등 -둥이 < 童 + -이 나무꾼, 장사꾼, 싸움꾼...
-
로퍼사고싶다 4
후
-
댓글 돔 1
.
-
뭐 강간갱이다. 2
창년아
-
화작 확통 3컷 0
확통 1틀 77 화작 1틀 82 둘다 보수적으로 잡아도 70프로대 중반은 나오겠죠??
-
Walk 4
009
-
잇올독서실형 vs 그린램프 어디갈까용 잇올 교실형이 다 차서 못들어가고 독서실형은...
-
1월부터 뉴런 들을거 같은데 작년에 사서 풀던 한완기가 있어서 수분감도 사야할지...
-
갑자기 영어1이 되는거임…
-
우리가 성불하지 않았음을 보여주자
-
남고라 그런가 걍처먹고 공론화도 안됨ㅋㅋ
-
걔네 아니었으면 지금보다 컷 2점은 더 낮을거 같은데 ㄹㅇ...
-
모고는 딱히 준비는 안해봤고 모르는 개념(나머지정리) 하나 못풀고 2등급 나옴 일단...
-
페이 왕 1
-
시간 진짜 쏜살같이 지나가네
-
생윤 임정환 쌤 들을건데 교재패스 올라와있어서 뭐 개념만 듣고 현돌하시는 분들...
-
뱌뱌 2
뱌뱌
-
옛날에 친하던 학원쌤들한테 수능성적 자랑할 생각에 기분이 좋네요 6
흐흐 열심히햇는데 통과 5등급이였던 내가 이세계에서는 쌉고수? 흐흐흐
-
??
-
미적러 고1수학 복습할때 복소수,순열 이런거 걸러도 되나요? 3
복소수 순열과조합 집합과명제 얘네 걸러도 될까요
-
당사자 ㅈㄴ 고통스럽나봄 한국에선 의사 못하는거 아닌가 이정도면 동덕여대 꼴페미...
-
애옹
-
수능썰 0
수능친 학교 사물함에 이상혁이름 있었음
-
오레가노 2
왕왕 왕 왕 왕 왕왕왕왕
-
. 메가대로만 나오게 해주세요
-
오르비의 정상화 2
-
성대 한양?
-
2020년 졸업자면 학생부 20% 들어가는 전형에서 불이익 있으려나요 ? 광역...
-
평소에는 아 공부 못해요 라고 대답하긴하는데 이게 베스트인가유?
-
뭐있음? 이과기준으로 반영비 때문인지 낙지에서 너무 차이나서요
-
난 왜 영어 1만돼도 지금 스나노리는학교들이 싹다 안정이 되냐 나만 ㅈ버그걸림?
-
제발제발제발젭랍제발제발벫
-
제가 작년에도 원서접수땜에 재수를 했는데 올해도 정보를 전혀모ㄹ랐다가 오늘에서야...
-
얍얍얍
이 문제뿐만 아니라 수학을 공부하면서 항상 고민하던 내용을 잘 다루어 주셨네요. 난해한 문제의 당연한듯이 써놓은 풀이를 보며 왜??라는 질문을 자주 했던 저는 흥미롭게 읽었습니다.