4월 수학1/2 수업 안내(주말까지 할인)
안녕하세요.
상승효과 이승효입니다.
선택과목 무료특강.
예상을 훌쩍 뛰어넘는 반응! 신청자가 270명 ㅠㅠ
저도 오랜만에 100%라이브 특강이라
아주 재밌게 잘 마쳤습니다. 정말 감사합니다!!!
신청자에게는 전원 쪽지로 링크 보내드렸는데
혹시라도 못받았다면 쪽지주세요.
자~ 오늘의 본론은 공통과목!
들어가기 전에 잠깐...
수강 할인 행사가 진행되고 있으니 놓치지 마세요.
프로모션이 이번주말에 끝난다고 하네요.
"수학1 개념속성 + 기출분석" 강좌 패키지 할인!
"수학2 셀렉션 - 삼차함수" 특강 (2만원입니다.)
시간표 보러가기
https://academy.orbi.kr/intro/teacher/#3)
1. 수학1 준킬러는 결국 도형
요즘 준킬러가 핫이슈죠.
더이상 27+3 킬러대비하는 시대가 아니잖아요.
그럼 준킬러 대비하려면 문제를 많이 풀면 될까요?
푸는 것도 중요하지만, 먼저 준킬러에 대해 잘 알아야겠죠.
작년 수능 문제 한번 봅시다.
문제를 보자마자 이런 그림이 그려진다면
이 문제는 더이상 준킬러가 아니라
시험끝나고 기억도 안나는 쉬운 문제인거죠.
수학1에서 각 단원별로 중요한 포인트가 있기는 하지만
수학1을 아우르는 핵심은 바로
점 이거든요.
미분을 배우기 전에 배우는 수학1은 무조건 점이에요.
그래서 자연스럽게 도형이 문제에 활용되는 것이죠.
따라서
수학1 준킬러를 쉽게 풀기 위해서는
도형을 제대로 공부해야 합니다.
두가지.
1) 중학교 도형 - 증명까지 마스터
2) 고1 수학 - 도형의 방정식 마스터
이런걸 교과서 그대로 정확히 이해, 암기(!!) 해야 한다는 뜻.
이번주 개강하는 수학1 수업을 들으면
도형이 수학1에서 어떻게 활용되는지
완벽하게 정리할 수 있습니다.
수학1과 도형을 한번에!
비대면 올라이브 수강도 가능합니다.
"수학1 시간표 보러 가기"
https://academy.orbi.kr/intro/teacher/252/l
2. 수학2는 그래프와 식세우기
삼차함수의 그래프는 아주 중요합니다.
아직도 많은 학생들이 내신 방식에 익숙하죠.
삼차함수의 성질을 잘 정리해서 외우기만 해도
문제 해석이 엄청나게 쉬워집니다.
연립해서 계산하기, 이런 태도를 버려야 되요.
상승효과에서만 배울 수 있는 꿀팁.
"기울어진 축"에 대해서 알려드릴게요.
그래프를 그려서 해석할때 아주 중요한 개념이에요.
1) 쉬운 버전
: 문제에서 "x=1에서 극점을 갖는다." 가 주어질 때
직선을 하나 그리세요. 이
직선은 y=f(1) 이고 그래프가 접하는 '축'이 됩니다.
그래프 모양은 아래 그림처럼 4개 중에 하나겠죠.
스치면서 위에서 접하거나 / 아래서 접하거나
뚫.접하면서 우상향하거나 우하향하거나
만약 최고차향의 계수가 양수인 삼차함수라면
보라색은 해당이 안될테니 신경쓰지 말고
나머지 세 개 중에서 하나일겁니다.
2) 기울어진 축
: 문제에서 "f(1)=3, f'(1)=2" 가 주어질 때
즉, 함숫값과 미분계수가 세트로 주어지는 경우
조건을 해석해보면 이런 경우 정말 많죠.
이걸 연립방정식 푸는데 많이 쓰죠?
노노. 그래프 바로 그릴 수 있어요.
함숫값과 미분계수의 조합은
그 점에서의 접선(기울어진 축)을 알려줍니다.
(1,3)을 지나고 기울기가 2인 직선을 그리면
f(x)는 무조건 그 직선에 접하게 되어 있어요.
즉 y=2x+1 이 f(x)의 x=1에서의 접선이에요.
극점을 알려주는 문제나, 접선을 알려주는 문제나
함숫값과 미분계수를 알려주는 문제는
정확히 똑같은 조건인 것이에요~
아래 그림처럼 기울어진 축 y=2x+1이 있고
그래프는 보라색처럼 위에서 접하거나
초록색처럼 아래서 접하거나
주황색처럼 뚫고 지나가면서 접하거나....
이렇게 함수의 그래프를 '축'이라는 관점에서 이해하면
그래프를 아주 쉽게 그릴수 있고
이 칼럼에서 설명은 안했지만 식도 간단히 세워집니다.
(여기서 축은 x축 뿐만 아니라 평행이동된 축,
또는 기울어진 축도 포함되겠죠)
"셀렉션 - 삼차함수" 특강을 들으면
3시간만에 삼차함수에 대한 정말 많은 것들을
체계적으로 배울 수 있습니다.
속된말로 정말 지리는 경험, 약속하겠습니다.
등급에 관계없이 정말 깜짝 놀랄거에요.
이번주말까지만 2만원에 할인중입니다.
"셀렉션 특강 수강신청하러 가기"
https://academy.orbi.kr/booking/gangnam/payment?selected_lecture=732
그럼 다들 화이팅하시고!
궁금한 점은 댓글로 남겨 주세요 :)
유튜브에서도 꾸준히 공부법 관련 컨텐츠가 업로드 중입니다.
구독 부탁드릴게요. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
3수는 누구나 다 하는 것 같고 4수부터 비로소 장수생인 것 같음
-
이원준쌤 안듣지만 이 말은 담아두는중
-
올 수능 2등급이고 평소에 가끔 1나오기도 하고 보통 2등급 중반 정도 나오는데...
-
배수진 치고 쌩4수 하면돼~
-
시발점 렛츠고 2
우진이한테 현혹됨
-
패히로 야나미
-
물리 2컷이면 동홍~국숭아 무리인가요? 세단은 안정일까요ㅠㅠ
-
게임, 애니, 넷플 등 아무거나 컨텐츠 좀 부탁드립니다 하루종일 옯질하고 잠만 자니 지루하네요..
-
아주 발악을 했는데 이젠 4시간 5시간만 자도 눈이 떠져서 잠이 안오네 4시간...
-
여기를 3초만 바라보세요 그러면 고닉 "시즈카" 에 대한 기억은 사라집니다 1 ....
-
예전에 그 드릴드드 성대모사 보고 개쪼갰었는데
-
과잠ㅇㅈ 31
애니메이트 가야지
-
의과대학, 그리고 설포카 공과대학 그정도 말고 현재 대학의 교육으로서의 역할은...
-
얼리버드 기상 7
-
내신은 고대가 반영한다는거 계산해보면 1.4초중 까진 나옵니다 어디까지 될까요?
-
잇올에서 짐 싸고 마지막으로 메가 대성에 들어가보는데 그동안 앞다투어 올라가 있던...
-
아가 기상 3
안뇽안뇽
-
가채점 = 실채점
-
제 주변에는 일단 다 미적에서 꼬라박았던데 생각보다 정답률이 높아보여서..
-
진짜 수헁 급한데 미적분의 힘이라는 책읽고 내용 요약했는데 수학적 오류가 있을지...
-
근의 분리는 이미 박살 났지않았나 240913인가 240613인가 둘중하난데...
-
죽을까
-
나는모자란사람인듯 수학만좀올라가면소원이없겠다
-
웃기다 ㅋㅋㅋ얘들 진짜 혹하겠네
-
메가에서 공통1틀 96점 백분위 100 예상해주고 있는데 9평 100이 99였는데...
-
고1 수학의 중요성은 정말 높은듯 다들 그냥 각잡고 수 상 해도 5
손해 없다고 봄 나는 내 과외 커리에 수상을 따로 합니다 얘들 수원수투풀면서 본인이...
-
주로 어디에 분포되어 있는걸까요 ?? 문과 최상위권은 미적/기하 선택으로 많이 이미...
-
지금 심찬우쌤 프리패스를 구매 했는데 이거 사면 앞으로나오는 강의들도 다 신청 가능 한건가요?
-
이건 재밌는듯 웃길려고 안하는듯하면서 웃길ㄹ려고하는거같은 현우진의 화법 이 사람 개극욕심 엄청남
-
상하차 끝! 9
내일도 근무를...하 끝나고 먹은 식혜는 캬 하고 나올정도로 값짐
-
2015 개정교육과정 수능을 봐야 하는 예비 고2입니다. 개정 시발점을 사서...
-
모두 기를 넣어주세요!!!
-
허허 3
나자신 오늘도 작작 잠자자
-
훈련시작 전 9
오늘 춥다
-
선예매도 실패하고 돈도 없네
-
2년전인가? 그때 3만원이였는데 오늘 살까 하고 들어가보니까 7.7만원이네 ㄷㄷ 뭔...
-
그나마 돈없어도 그쪽이 탈조선 용이함 돈있으면 바로 미국가지 지금 돈있고 권력있는...
-
내신 5점대 중반이고 모고는 공부 안 하고 대충 봤을 때 4등급대 나오는데 1년...
-
요즘 아틸라 토탈워 사서 1212모드(중세시대) 하고 있는데 꿀잼임. 2주일째...
-
젖같다 ㅅㅂ 가정체험도 못쓴다는데 떨어지면 졸업식 오기 전에 자살
-
아 1
편의점 알바 연락 없는거 보니까 채용 안된듯
-
미국 가서 서울대 학벌 vs 영국 옥스토비, 캠브릿지 학벌 어떻게 생각함? ㅋㅋ 31
미국에서 작년부터 한국 도청사건 2023 뜨고, 올해부터 반도체 관련 법으로...
-
급식딱충들이 뭔 돈이 있어서
-
주소를 왜 정확하게 적으라는거임
-
크 갓곡
-
진짜 암것도 안하고 출석하기 + 중간,기말고사 딱시험전날만 공부하기로 3.5 받음...
-
ㅋㅋㅋㅋㅋㅋㅋ 4
ㅅ ㅂ ㄹ ㅁ 는 금지어인데 씨발롬아는 금지어 아닌게 ㅈㄴ 웃기네 ㅋㅋㅋㅋㅋ
-
목공강 만드시나요?
-
과탐 선택이 생지가 아니라면
첫번째 댓글의 주인공이 되어보세요.