[박재우] 9평에 대한 분석과 저의 생각
안녕하세요
오랜만입니다.
어제 시험 분석을 하고 촬영을 하느라 글을 올리지 못하고
오늘 공강 시간이 되어서야 글을 올립니다.
우선 시험치느라 고생들 많이 했습니다.
언제나 얘기하는 것이지만 난이도라는 것은 개개마다 다르기에 언급하지 않겠습니다.
평균적인 난이도에 대한 부분은 여러 회사들이 분석해서 낼 것 이니까
그것이 훨씬 공신력이 있을거라 생각합니다.
오늘 아이들 질문을 받고 생각한 부분을 한 번 써 보고자 합니다.
언제나 생각해야 하는 방향은 어떻게 하면 문제를 빨리 풀고
실수하지 않고 잘 마무리 하느냐라고 생각합니다.
긴 시간을 갖고 문제를 정확하고 논리적으로 잘 푸는 것도 중요하지만
시간이라는 제약조건 내에 다시 한 번 검토할 수 있는 시간을 확보하고
좋은 점수를 얻기 위하여 전략을 어떻게 해야 효과적일까에 더 중점을 둬야 한다고
생각합니다.
이제 문제를 풀 때 어떤 부분에서 힌트를 얻고 힌트로 말미암아 중간 과정을 얼마나 많이 줄일 수 있을건지
이번 9평 주요문제들을 보면서 약간의 도움 말씀을 드리고자 합니다.
더 좋은 방법은 얼마든지 있으므로 제 말이 진리인 것은 아니라고 말씀을 미리 드립니다.
11번 - 근의 개수가 나오는 문제는 그래프 개형이라는 것과 이차함수는 항상 대칭성을 가지고 있다라는 것이
포인트겠죠. 최근 나왔던 주제이기도 하구요. 보자마자 짝수차 실근의 곱이 -9 라는 것에서
그래프상으로 +- 3인 것을 바로 얻고 f(n)=8 이되는 한 근이 3이므로 나머지 하나는 대칭성에 따라 1이 된다
끝이겠죠
13번 - 길이와 각이 주어진 문제기 니오면 일단 주어진 위치를 먼저 파악하는 것이 중요합니다.
그리고 원에 내접하는 삼각형이 있으면 바로 사인 정리를 떠올리고 반지름 구하기를 떠올리면 됩니다
일단 점 C에서 선분 ED에 수선의 발 H를 내리면 위치가 주어진 길이와 각에 의해 선분 CD는 바로 해결됩니다.
각 D는 자동해결 그리고 반지름은 OD를 생각하고 OE를 a라 두고 삼각형 OED에서 코사인 법칙을
쓰면 해결됩니다. 별로 시간이 소요되진 않습니다.
일단 각과 선분 길이가 있는 곳의 위치를 팡가하면 거기서 문제를 풀어 나갈 수 있게 될 겁니다.
14번 - 최근에 면적과 원함수의 차에 대한 해석이 좀 보이고 있습니다. 이 번 육사 문제에서도 속도에서
움직인 거리와 위치 변화량에 차에 대한 문제가 나왔죠. 명칭만 다를 뿐 기본적으로 같은 개념 입니다.
당연 절댓값이 들어가 있으므로 부호에 대한 해석이 전체 해석의 대부분이 됩니다.
두 함수의 값이 같아진다는 것이 무엇을 의미하는 지 꼭 기억하시길 바라구요
ㄱ,ㄴ,ㄷ, 합답형 문제는 우선 질문 내용을 스캔하고 들어가시면 좀 좋아지는 데 모든 질문에
이면이라는 조건이 들어가 있으므로 각 케이스에 대해 해석하면 될 것입니다.
합답형은 사고가 서로 연관이 되어 있다는 것을 꼭 기억하고 ㄴ과 ㄷ은 서로 연결이 되어 있음을
생각하고 들어가면 ㄷ 역시 간단하게 해결이 됩니다.
15번 - 기대보다 떨어지는 문제로서 살짝 실망했던 문제입니다.
전형적인 대입 추론 문제입니다.
처음에 4k가 나와 있다는 것에 착안점을 두고 반복되어지는 현상이 결국 4회를 기준으로 변할 수 있다는
것을 에상하면 빨리 해결이 되겠습니다.
(가) 경우에서 a4가 시작이므로 a1, a2, a3는 5보다 큰지 작은지 경우만 나누어서 접근하면 되겠습니다.
20번 - 별로 언급할 내용이 없습니다.
극대. 극소 x값 차가 4/3 이기에 기울기 4인 접선이 바로 (1,1) 지난다는 것은 비율로 금방 찾을 수 있겠
습니다.
21번 - 일직선 상에 놓여진 점은 항상 x축으로 수선을 내려서 삼각비를 이용해서 닮음을 쓴다는 것 기본입니다
22번 - 일단 그래프 해석할 때는 극단적인 예를 하나 들어서 상황에 만제 변회시키는 것을 추천합니다.
문제가 실근에 대한 얘기를 하기에 삼차함수의 x축에 접하는 점이 존재하는 형태의 그림을 생각하고
x축을 위 아래로 옮기면서 해석하면 정말 빨리 끝나게 됩니다.
그리고 중요한 점인 극점 부분을 항상 중심으로 우선 해석하길 바랍니다.
대략적인 부분을 공통 문제 중심으로 해석을 해 보았습니다.
결국 시간 싸움이라는 것 잊지마시고 극값 같은 중요한 포인트나 개형을 중심으로 우선 해석하는 연습을
많이 하길 바랍니다.
본인이 열심히 해왔다면 충분히 발 헤쳐 나갈 수 있으므로 남은 가간은 문제를 중심으로 해석하는 연습을
꼭 많이 하시길 바라고 시간에 대한 압박감과에 대한 대처와 풀이에 대한 전략 수립을 위해
주변 학원들에서 진행하는 현장 모의고사는 꼭 참여해서 연습해두길 바랍니다.
물론 아주 잘하는 친구들은 그냥 자기가 하던 것을 그대로 계속하시면 되겠습니다.
빨리 입시판을 건너길 바라며 파이팅입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
문과생 지금시점에서 국 수만 제대로 감유지하면 좋은점 0
언제든지 대학 탈출하는 가능성을 열어두는거임 ㅋㅋㅋㅋㅋ 진짜 국수만 꾸준히해도 탈출...
-
건대 입학키트 0
25학년도부터는 지급 계획에 있다는데 진짜일까요..?...
-
나 adhd임? 2
이거뭐냐
-
나때 기하 줠라 어려웟는데 미적은 최소한의 계산이 항상 존재하지만 기하는 언제나...
-
얼부기 0
얼부부기
-
나능지높도르수상?
-
어떠케될까
-
기계공학과: 공간도형, 공간벡터(벡터~공간) (3D CAD, CAM, CATIA,...
-
수능은 평균 능지만 돼도 거의 다 뚫을 수 있을 듯 0
국어 98, 99 쯤 위 빼고는 평균 능지만 돼도 시간만 쏟으면 다 맞을 수 있는 것 같음
-
뉴런에서 다뤄주시나요?? 시발점에는 없어서요
-
A와 B가 격하게 대립하고 있는 우리나라 특성상... "A가 정의롭지 않다고 해서...
-
ㄹㅇ 이 재능에 고마움 이해력빠른거
-
진짜 스카에서는 듣기 힘들던데
-
샤워하고 싶다 0
-
y=f(x^2)은 역함수를 가지지 못한다
-
현재 래알비기너스 듣고있는데 다 들으면 무ㅜㅜㄹ 공부해야될까요?ㅠ 흔히...
-
이걸 계속 가지다보니 이차함수 정적분 이런거조차 안하려고 발버둥을 쳣음 맨날 어캐든...
-
내일 고대 1
조발할 가능성 있죠?
-
이왜진 2
이왜진
-
수특이고, 수특 앞에 개념설명 부분만 읽고 푸는중인데, 한문제당 2분-4분 정도면...
-
어릴 때가 더 높게 나옴
-
수학 기출은 도형문제 빼면 그냥 연습장에 풀면 돼서 똑같은 책 추가로 안사고 n회독...
-
반수 6번하면… 6
세수.
-
뭔가 호불호가 굉장히 갈리는거같은데 어때요? 강사 수강평 보는게 취미인데 최인호쌤...
-
많이 쓰나요? 개정시발점엔 있어서 새로 들을까 고민..
-
ㅋㅋㅋㅋㅋㅋㅋ
-
일단 본인지역 지거국으로와서 친구는많은데
-
닉프사바꿈 4
응딱은 일베향이 너무많이나
-
능지백분위 99 수학3등급
-
근데 경제 공부하면 실제 경제 뉴스볼 때 도움되나요? 4
심심해서 경제 교과서 읽고 있는데 이거 실제로도 현실에 어느정도 대입가능한거죠?
-
북딱? 4
이게뭐임? 북한딱지?
-
우선 난 이번 계엄이 잘못됐다고 생각하고 그거 때문에 탄핵당한다고 해도 그럴만...
-
고려대인데 반수를왜해? 이반응만 몇번째여
-
이뻐요 :>
-
거짓말처럼 쏙들어갔음 여드름고민있는분들 금욕 시도해보심 좋을듯
-
[단독]尹 출발 전 마지막 메시지 “내가 어떻게 돼도 나 몰라라 할 수 없었다” 3
윤석열 대통령이 어제(15일) 고위공직자범죄수사처의 체포영장 집행을 수용하고...
-
아 생각보다 2
ㅈㄴ 피곤하넴..
-
연고전이라거나...대동제라거나...갈 시간은 충분해요 2학기 축제 있다 해도 길어야...
-
도와주십사 0
괜찮아 문장편 끝나고 바로 기출정식 들어가도 될까요? 아니면 믿어봐까지 할까요?
-
데유로 결정
-
과학적인 근거로 추론해본 결과 내일 나올 확률 50% 점메추 부탁드립니다
-
보고싶다 개인적으로 이원준이랑 김승리가 강사중에선 문제 제일 잘만든다고 생각하는데...
-
가능함? 학교 생활은 버려야겠지
-
최인호 0
뭔가 26수능에 나올거같음 쿨타임 돌지않았나 오정희는 사건이 있어가지고 진보정권들어서면 안나올거같고
-
걍 난 머리 안좋아 이런 자기 위안이지 분명 사람은 후천적으로 얻어지는 형질도 있고...
-
기말 이후 첫 공부 12
근데 공부는 어떻게 하는거였죠...?
-
대학어디가 홍익대 내신산출 왜 안해주나요?? 대학 요청으로 공개 안한다고 써있는데 오류 아니겠죠?
-
단순 표점 때문인가요 ㅜ
-
서강대는 0
예비번호 다 주나요?
-
오징어겜 상우 8
이런 느낌이 왜케 좋지 아이돌보다 이런 아저씨가 더 좋음 나 오지콤인가
선생님 항상 존경합니다