[이동훈t] 3월 수학, 이동훈 기출 비교
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 3월 수학 전 문항과
(단, 너무 쉬운 문제 제외)
2024 이동훈 기출을
비교해 보겠습니다.
기출이 어떻게 변형되어 출제되는지
꼭 익혀야 하는 수능 실전 개념은 무엇인지
반복되는 중요한 풀이에는 어떤 것들이 있는지
...
등등을 알아보겠습니다.
N수생 분들에게도 당연히 도움이 되겠지만
아직까지 기출에 대한 경험이 충분하지 않은
고3 분들에게 큰 도움이 되리라 생각합니다.
힐 위 고 ~!
<공통 (수학1+수학2) >
문제를 보자마자
이차함수의 정적분의 공식,
이차함수의 대칭성,
넓이의 분할과 합
이렇게 3가지가 떠오르지 않았다면
기출에 대한 연습이 부족한 것입니다.
아래는
2024 이동훈 기출 수학2에 수록된
이차함수의 정적분 공식에 대한
증명입니다.
이 문제를 보자마자
아래의 그림이 떠오르지 않는다면 ...
연습 부족입니다.
아래는 2024 이동훈 기출 수학2에
수록된 수능 실전 개념입니다.
19년에 출제된
교육청 기출의 순한맛 입니다.
이 문제에 대한 설명은 아래의 글로 대신합니다.
[이동훈t] A-B=(A+C)-(B+C) (+230311) 수학1
딱 보자마자 작년 9월 모평 문제가 떠올라야 합니다.
풀이법도 동일합니다.
합성함수의 방정식
이차함수의 대칭성
삼각함수의 실근의 합
이렇게 세 가지가 결합된 전형적인 문제입니다.
이 수준의 문제는
쎈 B 에서 충분히 찾을 수 있고요.
2024 이동훈 기출에서는
합성함수의 방정식에 대한 설명을
여러차례 해두었습니다.
ㄱ, ㄴ은 연속성, 미분가능성에 대한
교과서 적인 풀이를 적용하시면 되겠구요.
ㄷ에서는
이차함수의 정적분의 공식을
적용하면 계산을 단축할 수 있습니다.
아래는 2024 이동훈 기출 수학2의
예제 설명입니다.
딱 보자마자 작년 수능 15번을 떠올리게 되지요.
작년 수능 문제의 영혼 없는 버전이라고 보시면 됩니다.
표 또는 수형도를 그리면서 각 항에 올 수 있는
수를 판단하면 됩니다.
이건 특정한 이론이 필요하다기 보다는
경험적인 것이긴 한데요.
다만 증가와 감소를 반복한다는 점에서
주기함수 임을 알 수 있긴 합니다.
(이에 대해서는 6월 전에 따로
칼럼을 올려드릴 것입니다.)
이 문제는 아래의 글로 대신합니다.
[이동훈t] 평행이동을 해도 변하지 않는 성질 (+230320) 수학2
이 문제를 풀면
반복되는 항을 포함한 두 등식을 얻게 됩니다.
2번 이상 반복되는 항은 반드시 치환해야 하는데요.
이에 대해서는
2024 이동훈 기출 수학1에서
자세하게 설명해두었습니다.
이 문제 보자마자 아래의 9모 문제가 떠올라야 합니다.
위의 문제에
절댓값이 붙은 4차함수의
미분가능성이 결합되었다고
보시면 됩니다.
아래는 이 주제에 대한 기출문제의
풀이입니다.
(2024 이동훈 기출 수학2 수록)
이런 풀이과정은 반드시
익혀두어야 하겠지요.
수능은
그때그때 생각나는대로
푸는 것이 절대 아닙니다.
< 확률과 통계 >
교과서 연습문제에도 있는 문제입니다.
위, 아래 똑같죠?
다른 공, 다른 주머니에 해당하는 문제입니다.
(이 주제도 꼼꼼하게 학습해두어야 합니다.)
그냥 뭐 ... 같습니다.
J040 기출에 원순열을 결합한 문제입니다.
새로운 유형이라기 보다는
새로운 결합에 해당합니다.
J030 처럼
(1) 수(대상)을 선택하고
(2) 이를 나열한다. 이때, 같은 것이 있는 순열의 수를 이용한다.
라는 관점에서 같습니다.
이와 유사한 문제들은 워낙 많습니다.
이 문제 역시 ...
새로운 유형이라기 보다는
새로운 결합입니다.
아래의 두 문제를 묶었다고 보면 되겠습니다.
+여사건 포함
그래서 풀다보면 ...
어디선가 써본 풀이 같고 ...
뭐 그렇습니다.
< 미적분 >
속도의 관점에서 an = 3^n 으로 두면 됩니다.
위의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
역시 다항함수의 속도에 대한 문제입니다.
위의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
치환에 대한 문제인데요.
사실 1을 모두 지우고, 근사적인 계산을 해도 좋습니다.
이에 대한 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
수열의 합과 차 (수학1) + 수열의 극한
이 물리적으로 결합된 문제입니다.
위의 개념 설명은 2024 이동훈 기출 수학1 편에 수록되어 있습니다.
0<a<1, a>1 로 나누는 행동을
반드시 손에 익혀두어야 하는데요.
아래의 문제에서 이에 대한
연습을 하게 됩니다.
(2024 이동훈 기출 수학1 수록)
이 기출과 연관되어 볼 수도 있고 ...
사실 부등식 주고 자연수의 개수를 구하라는 문제는
워낙에 많으니까요. (특히 교사경에...)
수열의 극한값 구할 때에는
아래의 실전이론에 대한 이해가 반드시 필요합니다.
아래의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
이 문제는 사실상
도형의 확대, 축소에 대한
이해를 평가하고 있습니다.
아래의 개념 설명은 2024 이동훈 기출 수학1 편에 수록되어 있습니다.
< 기하 >
이 문제를 읽자마자 아래의 문제가 떠올라야죠.
이 문제 보자마자 아래의 문제가 생각나야 합니다.
추가적인 설명은 아래의 글을 참고하세요.
[이동훈t] 한 각을 공유하는 두 삼각형 (+230330기하) 수학1 + 기하
위의 두 기출문제는
삼각형(사다리꼴 포함)에서의
닮음을 평가하고 있습니다.
이차곡선에서는
삼각형(사다리꼴 포함)에서의
닮음비를 자주 묻습니다.
이 문제는
이차함수의 정의와
한 꼭짓점을 공유하는 2개의 삼각형를
결합된 것인데요.
이에 대한 설명은 2024 이동훈 기출 수학1에서 해두었습니다.
쭉 읽어보신 분들은 아시겠지만 ...
올해 3월 학평 수학은
기출과 수능 실전 개념에서
절대 벗어나지 않습니다.
평가원 기출 3회독,
(+수능 실전 개념 포함)
교사경 기출 2회독
이면 6월에서
당연히 1등급을
쟁취할 수 있습니다.
하고 싶은 공부를 해서는 안됩니다.
해야 하는 공부를 하길 바랍니다.
오늘도 열공 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
운동부애들말고 그냥 일반여자애가 때리면 별로 안아프지않음?
-
육군 가서 1년반동안 수학만 하고 27수능 사탐으로 바꿔서 반수 때려볼까요..?...
-
안 그래도 몇몇 MZ들 때문에 20대 취직 헬파티 됐는데 여대 사태 때문에 가속화된...
-
좀 찾아보니까 별로라는 말이 있던데 그냥 다른 강의 들을까요..?
-
쓸쓸한 노년이란 이런걸까
-
라고봄 인간과 사회에 대한 이해가 늘어남 빡통이라서 물화생 못하는것도 맞음ㅋ
-
물리 영재임
-
카톡창 ㅇㅈ 8
맨밑은과톡방이다
-
편의점갓다올래 0
짜파구리 땡김
-
또 나만 아싸지
-
여러분 사랑해요 4
뽀뽀쪽~❤️
-
흠
-
문과 14121 이면 어디 갈까요
-
어그로 죄송합니다... 현역은 보통 기출이랑 n제 몇월쯤에 시작하는게...
-
주변에 열에 일곱은 하던데 물론 전 안해놓음요
-
얼버기 3
잘잤다
-
죄송합니다 4
근데동뱃한분은 기만좀작작해주세요
-
안되네 역시 인체는 ㅈㄴ신비한거 같애
-
받아줘요잉
-
심심해서 괴롭다 0
ㅎㅎ
-
어이가없뇨잇 7
아니몇몇은걍아싸코스프레잖아
-
편입할건데 0
내년에 22살이걸랑..? 근데 내가 올해 학은제했단말이야 근데 공부를 안함 그래서...
-
고속이랑 텔그가 비슷하게 짜고 진학사가 유달리 후함 3
이거 ㅅㅂ 텔그랑 고속으로 수렴하는 엔딩 나오나
-
공지 암만 뒤져도 추합 일정이 안나오던데 목요일부터 매일 한 번씩 홈페이지에서...
-
내가 공부못하는 동네에 살아서 그런가 다들 스토리에 올리기 싫은 대학 갔나봄
-
끊인라면vs컵라면 13
ㅇㅇ?
-
약속한 얘들 말고 다른 얘들도 좀 마주쳣는데 그래도 다들 원하는 만큼은 아니지만...
-
순서대로 제 69수능입니다 원래 수포자였다가 고2 중후반부터 수학 공부했어요 국어는...
-
난 민망해서 못 하겠던데
-
ㅜㅜㅜㅜ
-
2-3월안에 끝낼건데 추천좀??
-
인스타에 7
뭐 게시물 올리면 무반응일가봐 잘 안올림..스토리충이 되었고
-
오르비팔로워보다적다ㅁㅌㅊ?
-
언매 기하 생윤 사문 으로 경희대 한의대 가능할까요? 백분위 보는 대학이라 생윤...
-
수학 할 맛 나겠노 내일부터 수학 본격적으로 해야지
-
노프사 + 올린거도 없어서 태그마저안하면 내가누군지모를거임...
-
숨고에올렸는데 오늘 영어회화받고싶은사라므1명요청서옴 분명히 수능영어라적어놨는데
-
현재 고2입니다. 아래는 과목별 질문이고 가장 최근 모의고사 국 수 성적...
-
Team07은 계속 달리고 있어
-
미루다가 안푼거 토벌하는 중인데 문풀3시간30분 + 계산 잘멋한거 고치기30분...
-
5칸 추불됐네 0
하...
-
어그로 죄송합니다 ㅠ 이미지쌤 풀커라 타려는데 신발끈, 중등도형 세젤쉬 수 12...
-
시대갤로놀러감ㅂㅂ
-
진학사 정시 예측 좀 볼라는데 가나다군 칸수전략 학과 추천 여러개 뭐 많던데 뭘...
-
안되는데
-
다다아ㅏ닥 사탐 제발 좋은 과목 잘 고를수있기를
-
있나요 ??? 아주대랑 비교하는 글을 봐서.. 궁금합니다
첫번째 댓글의 주인공이 되어보세요.