나는 현우진 수분감 작수 14번 해설이 왜 논란이 안되는지 모르겠음
아무도 이걸 언급을 안하네?
14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이라는 멍소리를 하는걸 보고 저거 해설 바뀌겠구만 했는데 아직도 그대로더라ㅋㅋㅋ
그게 +-가 상쇄되어서 그러는게 아니기 때문에 다른 문제에 적용되면 안될 수밖에 없음.
저 해설보고 아 상쇄되는구나 정리한 애들은 언젠간 나중에 한번 틀리고 어 왜 상쇄 안되지? 할거임.
극한으로 정의된 함수의 극한이라는 소재는 충분히 미리 다뤄놓을 가치가 있는데..원리도 간단하고 쉬운데 말이지. 솔직히 뉴런에 넣어놨어야 한다고 본다.
이번에 4모 미적 30번도 작수 14번 제대로 분석해놨으면 훨씬 빨리 풀 수 있었음.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅋㅋㅋㅋㅋㅋㅋ
-
덕코 다 줄게요
-
낚시하러가고싶네 1
그런거네
-
정벽 ㅇㅈ 드디어 보네 11
일단 내일 인쇄소 맡길예정 못참겠다
-
문과출신 자전 입학생인데 과 선택때문에 고민이 많아서요.. 질문좀 받아주실분 계신가요
-
왜들어옴?
-
즐겁다 삿포로 9
-
행복하네 3
ㅇㅁㅇ
-
나와하나가되자
-
안믿는사람끼리 지옥가서 쿠데타 일으키고 하늘나라도 민주화시켜놨을거같음 걱정마셈 ㅇㅇ...
-
. 30
이게 벌써 5년 전인가
-
알려드림
-
7기 아웃풋 8기 아웃풋 사실 별 차이 없음
-
ㅅㅂ
-
무식을 들켰을때임 어떤분야든 남들보다 조금 부족하다는것을 들켰을때의 수치심이 나를...
-
내 ㅇㅈ보기전에 내글만보고 어떻게 생겼을거라 예측했음?
-
맞팔 안구함 2
ㄱㄱ
-
반박하려면 보닌보다 덕코 많아야됨
-
Mbti맞춰봐요 7
뭐같음
-
학원물. 남주는 친구 없고 여주는 씹인싸. 서로 좋아하는데 여주가 개씹혐성츤데레라서...
-
나의 앰비티아이 21
그건 비밀이란거야
-
진짜 자러감 13
다들 굿나잇이다.
-
고3때 열등감 때문에 노베로 시작해서 재수까지 했는데 아쉬움이 너무 남는것...
-
커뮤에 확실히 2
istp랑 intp가 많은듯
-
사탐런 질문 0
이제 고3 올라가는 07년생입니다 작년부터 사탐런에 대해 얘기가 많더니 지금은...
-
iStJ 있나요 1
-
istp는하나도없네 고독하다
-
임신서기석 10
ㅇ.
-
나도 칼럼 써봄 22
풉
-
스토리짜도 다 흔한 클리셰범벅이야
-
찐따새끼라는나쁜말은ㄴㄴ
-
이거 어케 하는 거냐 ㅋㅋㅋ
-
? 진짜 모름
-
좋아하는 소설이 7
완결직전이라는 것은 너무 슬퍼요
-
그 두개가 어떻게 공존할 수 있는지는 모르겠는데 아무튼 그럼 비의도적 싸가지없음이라 그런듯
-
사실 생각보다는 정상일수도
-
INTP 손~~ 17
넵
-
이 오르비언이 현생에서 착한 사람인지 아닌지 대충 알거같음
-
예비고1 이고 고2모고는 80후반 정도떠요 (고3건 학원에서 아직) 너무 감독해만...
-
Mbti 메타다 4
전 infj입니다 그 유명한 T F 반반임
-
1년만 더 질게..
-
현생이미지 예측좀 13
-
조선시대에 공주였던여자애가 궁에서일하는궁녀와사랑에빠짐 둘이사랑해서 은밀하게...
-
내 mbti 예측 ㄱㄱ 15
내일 다시 검사해볼거니까 미리 예측해주세오
-
이런 건 내 열등감일 가능성이 높냐 아니면 뇌피셜레이더가 작동해서 거를 사람 거르는거임?
-
고인물들은 안 봐도 됨 화2가 처음이거나 미숙하면 농도 관련된 문제를 풀 때 용질을...
상쇄 안되나요? 그럼 어떻게 풀어야 하나요
결론부터 말하자면 'f(x)의 좌극한/우극한으로 정의된 함수'의 x=a에서의 좌극한/우극한은 그냥
f(x)의 극한으로 정의된 함수나 f(x)의 좌극한/우극한과 결국 같습니다.(극한으로 정의된 함수가 평행/대칭이동일 가능성이 있기 때문에 전자로 이해하는 것이 편해요.)
따라서 위 해설은 상쇄된다가 아닌, 결국 좌극한이다로 가야 맞지요.
핵심은 '좌극한/우극한으로 정의된 함수'(이하 좌우정함)는, x=a에서 함숫값이 정의되지 않는 '극한으로 정의된 함수'(이하 극정함)에서 함숫값을 정의해 준 함수일 뿐이라고 인지하는 것 입니다. 그렇기에 원래 함수의 함숫값은 좌/우극한을 구하는데 전혀 의미가 없지요.
쉽게 말하면 좌우정함은 극정함에서 소위 말하는 빵꾸를 메꿔준 함수일 뿐입니다.
그래프로 이해하면 가장 편합니다.
예를 들어 f(x)라는 함수의 x=a에서의 좌극한은 2, 우극한은 -3, 함숫값은 1이라고 합시다.
f(x)는 x=a에서의 극한값이 정의 되지 않기 때문에, 이 함수의 극정함은 a에서의 함숫값이 정의되지 않습니다.(평행/대칭이동X일때)
하지만 f(x)의 우정함은 정의해줄 수 있지요. 이 경우 우정함의 x=a의 함숫값은 -3이겠죠?
이 우정함의 x=a에서의 좌극한을 구한다고 합시다. 자 여기서 우리가 헷갈리는 부분이 나옵니다. f(x)의 우정함은 f(x+)로 아는데, 좌극한은 어떻게 구하지? f(a+-)?
그러나 아까 상술했듯 우정함은 그저 극정함에서 정의되지 않은 함숫값을 우극한으로 정의해놨을 뿐입니다. 우정함의 좌극한은 결국 극정함의 좌극한과 다르지 않다는 의미이죠.
따라서 f(x)의 우정함의 x=a에서 좌극한은 2겠네요. 현우진 선생님의 논리라면 1이고요.
글로 써서 과연 전달이 잘 됐을까 하네요ㅎ..
그렇군요 극한으로 정의되는 함수는 준킬러에서도 잘 나오는 소재이니 잘 써먹겠습니다
좌/우극한으로 정의된 함수에 대해 잘 서술해 놓은 책이 있나요? 무슨말을 하신진 어느정도 알겠는데 약간 찝찝하네요. 관련내용 찾아보려고 14번 강의도 보고 기출책 답지도 찾아봤는데 강의들은 대부분 치환해서 풀고 책은 왜그런지 서술하기 보다는 그냥 좌극한으로 간다고만 적혀있네요. 그냥 받아들여야 하나요...
음 혹시 이렇게 이해해도 되나요? 1의 좌극한의 우극한이라는게 1의 좌극한과 1사이의 무수히 많은 실수중 하나여서 결국은 1의 왼쪽이니 좌극한이 된다.
근데 이렇게 이해하면 다른 문제가 생기는게 1의 우극한의 좌극한이 되면 오히려 1의 우극한이 되는거 아닌가요? x에 대한 함수여서 좌극한을 보는게 먼저일까요?
그렇게 이해하기보다는 그래프로 이해하시는게 빠릅니다.
하신 것처럼 식으로 이해하려면 이렇게 이해하시면 될듯 합니다!
결국 마지막에 적용되는 극한방향만 고려하면 된다고 외워두시는 것도 좋아요.
감사합니다
선생님 혹시 시간 되시면 아래 글 확인해주실 수 있을까요?
https://orbi.kr/00063066874
선생님과 제가 생각한 방식이 다른 것 같은데 이에 대해 어떻게 생각하시는지 의견이 궁금합니다.
저도 "14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이다"라는 설명이 명백히 잘못되었다는 점에 동의합니다.