Farewell[1] : 초전도치
약간의 변심으로, 간단한데 임팩트 있는 스킬 뿌려 놓고 가겠습니다. 은퇴선물..?
제가 풀이 칼럼을 올리지 않은 시점부터 만든게 많은데, 다 끌어안고 가려고 했다만, 저한테 무슨 느낌의 스킬들이 있었는지 적는것도 나쁘지 않을 것 같아서요. 다 계산을 최대한 쉽고 빠르게 하는 방법론이었어요. 이 스킬은 과외 수업 도중 발견한 스킬로, 이름도 그 수업하던 학생이 이렇게 하자고 했습니다.
뭐 아무튼, length(Farewell)=3으로, 다음 글이 마지막 글입니다.
이걸 원래 쓰는 분이 계셨을수도 있고 아닐수도 있고.. 뭐 아무튼, 이제는 제가 글을 올려버렸으니, 산화수에서 산화수법으로 풀어야 하는 문제에 한해서 이렇게 풀지 않으면 손해가 생길겁니다. 원래 이렇게 풀던 분이 있던 없던, 이 풀이도 공론화가 된 풀이는 아닌 것 같기 때문에..
앞으로 이 풀이를 보면 어 초전도치 아니냐? 해주시면 감사하겠습니다.
중요한 부분이 있는데요,
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
이 방법은 초전도체입니다.
전하량 보존으로 풀 수 있는 산화수 문제의 경우 이 스킬을 사용하면, 전하량 보존을 사용했을때보다 계산량이 같거나 아주약간 큽니다.
이것만으로도 좋긴 합니다. 보통 전하량 보존이 너무 유리하거든요. 산화수법이 유리해 보이는데? 싶었는데 알고보니 전하량 보존이 더 유리했으면 지옥의 계산을 경험하신 학생들이 많을겁니다.
이해하기 쉬운 내용이니, 문제 하나로 끝내겠습니다.
그 전에 간단한 개념 설명을 하겠습니다.
우선 산화수법을 우리가 어떻게 사용하는지 봅시다.
산화수가 변화하는걸 화살표로 표현하고, 원자 A, B가 산화환원 반응에 참여한다고 생각합시다.
그럼 다음과 같이 표기할 수 있을겁니다. 다음 상황은, 원자 A는 산화수가 -1에서 3이 되고, 원자 B는 산화수가 4에서 2가 되는 상황입니다. 그러면 산화수와 계수를 맞추면...
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이렇게 표시할 수 있겠죠.
바로 일반화 들어갑니다.
A: a -> b (x m)
B: c -> d (x n)
이런 산화수 변화 상황이 있다고 합시다. 이 식이 성립하려면
n(c-d) = m(b-a) 가 성립해야 할 겁니다. (산화 환원 여부를 몰라도 부호만 반대면 되겠죠?)
전개합니다.
ma + nc = mb + nd
이 꼴이 나오는데요, 다시 위의 예시를 들고와서 이게 뭔 뜻인지 살펴보면..
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
일반적으로 알려진 방법 대신,
-1 x 2 + 4 x 4 = 3 x 2 + 2 x 4
이런 식으로 왼쪽끼리 곱해서 더하고, 오른쪽끼리 곱해서 더하고.. 를 확인하는 식으로도 산화수 매칭이 성립하는지 확인할 수 있습니다.
일단 이것만 보면 별거 아닌데요..
이항이 가능합니다.
(이래서 이름이 초전도치)
뭔 소리냐면
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이걸 A쪽은 -1을 이항하고, B쪽은 2를 이항합니다.
A: 0 -> 4 (x2)
B : 2 -> 0 (x4)
이러면 암산으로도, 이 산화수 매칭이 성립한다는게 확인이 가능하네요.
뭐 아직도 별거 아닌것 같습니다. 이 스킬은 문자가 포함되어 있을 때 그 진국이 나오는데..
이 문항 하나로 끝내고, 여러분들이 연습을 해 주시면 될 것 같습니다.
이 문제가 대표적인 "산화수법이 유리한 문제"인데요,
두번째 조건과 반응식에서 Y의 산화수를 확인하면 우선 다음과 같이 표현할 수 있습니다.
X : ?(m으로 표현됨) -> +n (x1)
Y : +n-1 -> +n (x3)
그리고 세번째 조건을 사용하면 다음과 같이 산화수 변화를 표현할 수 있습니다.
X : +3(n-1) -> +n (x1)
Y : +n-1 -> +n (x3)
여기서 한번 암산으로 어떻게 이항 하면 이쁘게 풀릴지 생각 해 보시는걸 추천드립니다.
(스포방지용 간격)
왼쪽에 n, 오른쪽에 상수를 몰아주는 편이 제일 좋습니다. 이러면 추가 이항이 안 생깁니다. 다음과 같이요.
X : 2n -> 3 (x1)
Y : 0 -> 1 (x3)
이제 (물론 암산으로 충분하지만)
2n x 1 + 0 x 3 = 3 x 1 + 1 x 3
이므로 n = 3입니다.
축하합니다. 이제 여러분들은 231114와 그 강화형 문제들을 암산으로 푸실 수 있습니다. 물론 굳이 암산으로 할 필요는 없고 위 처럼 정형화된 틀에서 이항시켜서 문제를 푸시면 됩니다.
한번 N제를 꺼내서 산화수법 문제를 풀어보면 231114보다 체감상 차이가 더 심할겁니다.
꼭 체화하고 쓰시길 바랍니다. 알고 모르고 시간차가 꽤 납니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일본어 잘 아는 편은 아니긴 한데 솔직히 개인적으로 한국노래 보다 좋다고 생각함
-
현역 때 정시 시작하면 삼수로 대학 간다
-
타로점 봐드립니다(2) 85
말 그대로 타로점 봐드려요. 가벼운 주제는 보고싶은 주제+1~78 중 숫자 3개...
-
기말이 12.5에 끝납니다. 12.10쯤부터해서 3월전까지 정시 베이스깔 생각입니다...
-
오늘을 즐겨!!
-
ㅇㅈ 1
-
69수 성적변화 15
6: 98 100 3 95 98 9: 84 95 1 93 99 11: 92 100...
-
질문 받습니다 6
뭐든 가리지 않고 답변해드립니다
-
올해목표겸계획 3
피파 슈챔찍기(현재 최고기록 13x등) 책 100권읽기(현재까지 43권 읽음) 매일...
-
나도 무물 24
-
솔직히 힘듬 0
압박감 때문에 살 ㅈㄴ 빠지고 건강도 안 좋아짐 공부? 지금 좀 노답이긴 한데 중고...
-
지구 3등급 나왔는데 이번 겨방 시즌에 고3이들처럼 개념 다시하는게 맞겠죠?
-
무물할까요.. 16
3명 정도만 왓으면 좋겟다
-
완자같은걸로 개념때는건 불가능한가
-
가능할려나 군대 들가기전에 공부해둬야되나..
-
재수는 반수 포함하면 대치동 애들 70~80%는 하는것 같은데 삼수는 ㄹㅇ 10%정도인듯
-
저도 무물보 12
수험생일 때는 무물보 글 보이면 할게 얼마나 없길래 이런걸 올리나부터 생각했는데...
-
ㅇㅈ 3
그런건 없다 게이야 ㅋㅋ
-
예비고3 정시 작년에 대종쌤 step0,1 체화서까지 다 풀었는데 올해는 승리쌤...
-
한 3개월 힘든일하면서 바짝벌고 그이후 8개월정도공부만하는게낫나요 아님 바로...
-
핵펑크는 2,3급간이겠지요?
-
원래 화미물1지1이었는게 화확지1 사문 으로 바꿀겁니다 3월 입대인데 그 전에...
-
학교 다니면서 공부하려 하는데 무리인가요??
-
시대인재 조교 1
확통 92 점은 안 받겠죠?
-
무물보 받음 13
ㅇㅇ해봐
-
06재수생 과탐ㅊㅊ 16
현역때 화생 화학에 모든 걸 걸엇는데 이번에 배신당해서...
-
중대 반수생인데 걍 복학하려구요…. 더는 못하겠어요 시발
-
과탐별 타임어택 순위좀 15
화2>생2>생1>화1>물2>물1>지1>지2 이게 맞음?
-
사교육 카르텔 ebs랑 부산교육청이 척결해주자
-
ㄱㄱ혓
-
진 무물보 5
만날 술먹고 들어오는 한량이지만...
-
미적분 책을 펴고
-
고대식 내신은 잘 모르겠으나 대략 1.8~1.9정도 언확 정법 사문 85 92 47...
-
올해 40권 약간 넘긴거같은데 20권이 수능끝나고 지금까지읽은책임..
-
한남 29
한다면 하는 남자 근데 이거 올해 패스 끝나기 전에 완강 못 때리겠지
-
ㅈ걑은 논술 차피 조질 것 같은데 그냉 심적으로 너무 짜증만 남 절친들 오늘 나...
-
오직 독학이었구나 나.
-
외모9등급탈출기
-
브론즈보다 쓰레기 수준
-
이과 사탐런 조사
-
지상철 역 건축
-
물2 강사 16
배기범 방인혁 아무나 들어도 상관없나요.
-
간만에 존나웃었네 ㅋㅋㅋ
-
사실 그거랑 상관없이 사려고는 하는데요..
-
연고티비... 4
진짜 폼 다죽었구나 최근 영상보면 그냥 엄...
존경합니다 논화님 바로 개추 와바박 박았습니다
Goat...
ㅅㅂ 화학은 이런것까지 해야하는구나 역시 물리가 답이네
물리나 화학이나..
역시 수능 화학은
이런 기괴한거까지해야하나
잉 진짜 쉬운데 걍 이항하고 곱하면 끝나니깐..
화2 칼럼도 부탁드립니다
쉽고좋은데 댓글공작오지네요 저런거때문에 회학선택자 줄어드는거임
지금까지 올린 스킬중에 제일 쉬움ㅇㅇ...
그러면 화학이 ㅈㄴ어려워서 하면 안되는 과목같잖아요;
초전도치야 고마워!
진짜신기하네요
처음엔 어 은근 복잡하지 않나? 싶었는데 이항이 되는게 진짜 괜찮네요 좋은 스킬인듯 ㅎㅎ
초전도치야고마워
이게 개쓸데없는 지엽스킬처럼 느껴진다면 기출/n제 학습을 안해본게아닐까요
이거보다 쉽게 설명할 수 있는 방법도 없고 적용 방법도 간단하고 여타 강사들마냥 스킬 사용 조건 대충 규정해놓은 것도 아니고 스킬 사용시에 유의미한 시간절약이 가능하고
원래 과탐 영역에서의 스킬이라는 게 “훈련되면 특정 상황에서 무지성으로 적용”해서 시간을 절약할 수 있기 때문에 의미가 있는 것인데(평소에 사고력을 사용해서 푸는 데 걸리던 시간을 절약할 수 있으므로) 그 의미와 필요성에 대해 스스로 생각을 안 해보는 사람들이 생각보다 많음
미지수가 있더라도 이항한 결과를 적어서 세로로 계산하는 것보다 산화수 차를 바로 계산하는게 더 빠르지 않나요..? 위 상황에서도 산화수 차가 2n-3, 1인게 바로 보이고요..
저문제가 쉬워서 그럼