미분가능과 도함수연속성
일단 결론은 미분가능≠도함수연속 입니다
이 내용을 현행교육과정내에서 간단히 풀어내보겠습니다
미분가능하다의 정의는
1. 연속
2. 모든 실수 a에 대하여 가 존재(좌미분계수=우미분계수를 내포하는 내용)
사실 수능문제들에서 미분가능성을 따질때 정석적으로는 2번의 정의로 다 풀수있으나 실전성을 위해 첨점과 같은 내용으로 한눈에 파악하기도하죠
도함수가 연속이다의 정의는 그냥 일반적인 연속의정의인
를 확인해주면 됩니다
결국 도함수가 연속이면 미분가능함의 2번조건을 자동적으로 만족해줍니다
그럼 1번조건인 연속하다라는 어떻게할까요?
도함수의 정의자체가 원함수의 각 지점의 미분계수를 뜻하는것이기에 도함수가 연속이면 당연히 원함수도 연속입니다
(원함수가 불연속이면 도함수의 정의상 원함수가 불연속인 지점에서 정의되지않기때문에 도함수는 불연속이됩니다)
그러므로 도함수가 연속이면 미분가능합니다
하지만 첫 줄에서 말했듯
미분이 가능하다고 도함수가 연속인것은 아닙니다
미분가능해도 도함수가 불연속일 수 있다는거죠
왜 우리의 직관과는 달라보이는 이런일이 발생한걸까요?
그 이유는
일수도 있기 때문입니다
분명 미분계수의정의로든 로피탈로든 둘이 같다 생각해왔었는데 실은 다른경우도 있다는거죠
f(x)가 미분가능하다고 전제한다면 저 두식의 좌항은 서로 같겠지만 좌항과 우항이 다른경우가 있을수도 있어서 미분가능이 도함수의연속을 보장해주지 않습니다
그 예시는 밑에 보여드리겠습니다
다만 이런 경우는 적어도 구간별로 다르게 정의됐을때와 같은경우에나 발생하지 일반적인 미분가능한함수에서는 저 위에 두식에서 좌항과 우항이 같음이 성립하니 문제푸실때 이런경우를 너무 과도하게 생각하실필요는 없습니다
미분이 가능하지만 도함수는 불연속인 대표적인 예시이자 기출입니다
미분계수의 정의를 이용하면
이므로 미분이 가능함을 알 수 있습니다
하지만 이때 미분법을 이용해 도함수를 구해주면
이를 실제로 그려보면 도함수가 x=0 근방에서 미친듯이 진동하는것을 확인할수있습니다
결국
임을 확인할수있기에 미분이 가능해도 도함수는 연속이아닙니다
매번 주기적으로 불타는 주제이기에 한번 정리해보았습니다
사실 수능문제에서 그렇게 크리티컬하게 다뤄지는 내용도 아니고 교육과정내에서 완벽하게 증명이 된다고는 볼 수는 없긴합니다
도움이돼셨다면 좋아요를....!!
0 XDK (+5,100)
-
5,000
-
100
-
애기 때는 귀여웠는데 14
지금은 늙어버린 재수생이 됐음 엄
-
개인적으로 예수도 안믿지만 타로는 믿음 학교축제에서 타로 봤었을 때 매 우 정 확 했 음
-
지금은 95키로임 ㅋㅋㅋ
-
근데 돈이 없어...
-
그냥 그런생각이 듬 물론 그 평생이 얼마 안남은듯
-
??
-
난 친구가 없어 2
흑흑
-
서울대, 한양대는 학종 정성평가라 검1고생은 나가리고 고려대, 연세대는 정량평가라 쓰여있네
-
결혼하고싶다 와이프한테 이것저것 요리만들어서 먹이고싶다 앞치마 두르고 요리하고...
-
오야스미 0
네루!
-
어디로 가야하나요 입결로 따지면 숭실이 압승인것같긴한데 광운대 전자가 아웃풋으로 좀 유명해서...
-
자라. 캬캬. 3
내일 1교시라 자러 갑니다 편안한 밤 되십쇼 오르비 소등하겠슴다
-
스플랑크니조마이 :) 슈퍼초대박날거야 :)
-
ㅈㄱㄴ
-
안 자는 사람? 6
-
ㅈㄱㄴ 일단 스카이는 다 보고
-
05형님들이 수능보고나서 11월말쯤에 같은 반애들끼리 이제 정시 시작이라고 같이...
-
수능끝난날부터 아침저녁 신경안쓰고 무지성으로 깰때까지 수면, 배고플때 밥,...
-
따뜻한 물에 삶아지는중 노곤노곤
-
효용이 없다 이런걸 말하려는건 아니고 읽는걸 잘 못하는 사람이 읽는법을 읽어서...
-
인강 완전 대체로 독학서느낌? 같긴한데
-
사탐신규커리 0
보통 언제나옴?? 정법이랑 생윤 할 거 같음
-
무지성 토익 신청함 14
걍 가면 몇 점 나옴?
-
아예 균형을 잃는 것도 하나의 방법일 수 있음. 균형을 잃고 거기서 추진력을 얻어서...
-
저들이 나와같은 인간이라는게 믿기지않는 압도적으로 똑똑하거나 성실하거나 아름답거나...
-
흐어
-
비문학 독해 연습 드가자...
-
가슴 한 켠에 증오 대신 문학을 담고 오늘의 끼니보다 내일의 희망을 노래하는 사람이 되고 싶어요
-
국어 공통 김승리 풀 커리 언매 유대종 수학 예체능이라 X 영어 션티 or 이명학...
-
남초 입시커뮤에 왜 여시충 아줌마가 와서 여대관련 이슈만 보이면 아득바득 달려와서...
-
앞으로 데이터사이언스, 데이터분석 관련 직군이 더욱 늘어날거라 미래에 배팅한다고...
-
수능에선 걍 잘풀고 답맞추면 장땡이지 수험생입장에서 강사가 출제자의도를 보여주니...
-
두 문제 틀렸는데 그럴수도 있음?
-
1. 의사 면허가 모든 것을 책임져주는 시대는 언젠간 반드시 사라질 것 같다....
-
경제하다와서보면얘는ㄹㅇ..
-
올해 지구 1
50 50 47인데 과외 경쟁력있음? 근데 이제 수능찍맞n개를 곁들인 ㅋㅋ
-
머가 더 지금시기에 와닿음?
-
ㅇㅈ 2
ㅇ
-
안녕하세요 사탐,과탐 둘 다 노베이고 어느것을 할까요? 미리 경험하신 분들께 조언...
-
기출 푸는데 갑자기 미적기하 선택에서 그런거 없어지고 기하랑 다 들어있길래 뭐지...
-
신선하다는 의견을 많이 봤는데… 그냥 사설에서 나오는 유형 아님??
-
수학 잘하려면 2
수학 개념을 다 익히고 문제푸는거에요 아니면 개념 보고 바로 문제를 풀어서 개념을...
-
시험장에서 공통 은 잊어버렷는데 미적이 존나 어려웟어서
-
1컷 84~85면 내가 승
-
하ㅠ
-
아..적당히 해야지
-
님들 과외 어디서 구함 14
답답하네
-
반수하신분들…. 4
반수에 도움되는 조언 한마디씩만.. 부탁드립니다… 무휴반해야할수더 있고요…....
서로다르다는 기호를 어케쓰는지를 몰라서 ㅋㅋ...
양해부탁드립니당
도함수가 연속이면 미분가능 o
미분가능이면 도함수연속 x(반례) 이군요
반례가 어케되죠
도함수의 함숫값만 존재하면 되는거아님? 도함수의 극한값과는 관계없이 어차피 f'(a)라는 값만 보는거니까
감사합니다....안 그래도 제가 헛소릴 해서....깔끔하게 정리해주셨네요
도함수가 연속이면 미분가능이지만 그 역은 성립이 안 된다는 걸로 한 줄 정리가 되네요
!= 입니다
헛 감사합니다
호훈이 맨날 강조하는 거네
저도 이거 배웠는데 반례가 현행 교육과정에서는 힘들고 가형 30번에나 나올거같은 기괴한 함수여서 별로 상관 없는거같던데
저함수근데 교과서에 있음 ㅋㅋㅋ
수2범위 내에선 그냥 동치 맞죠?
ㅇ예
김기현 들으면 저거까지 다 증명 및 소개까지 다 해줌 아 ㅋㅋ
확통 선택자인데
역은 성립하지 않는다고 기억해두면 될까요?
유용한 글 감사합니다
도함수가 연속이면 미분가능하다
역은 성립하지않는다
도함수 말고 그냥 함수는
연속이라고 미분 가능한 함수가 아니고
미분이 가능하면 연속이라고 알고 있는데 헷갈리네요
확실하게 알아야겠어요
수분감 미적 스텝2에
"선생님 그럼 sin1/x는요? 말도 안되는 소리하지말고 " 한 5번쯤 나오는데 뭔소린지 몰랐는데
드디어 ㅋㅋ..
저거 강기원이 자주 얘기하는 함순데
팔 부르르 떨기 ㅋㅋㅋ
기구하다
N제에 비슷한 개념이 헷걸리는 문제가 있는데 그럼 f프라임의 극한값은 존재 하는데 함숫값과는 다른경우에도 미분 가능할 수 있겠죠 주어진 구간대로 함수를 미분해서 구하면 좌극한 우극한은 같은데 함숫값이 다른경우가 있더라고요
수2 n제인데 다시 보긴 해야되는데 기억상 이런 문제가 있더라고요
간단하게 변곡점의 미분계수가0인 삼차함수의 역함수를 생각해보면 됨 이 역함수의 변곡점의 미분계수는 정의 되지 않지만, 미분 가능임
이건 틀린말이지요 y=x^3의 삼차함수의 역함수는
0에서 미분가능하지않지만(평균변화율의 극한의 발산) 접선이 존재한다가 옳습니다
y평점은 미분도 불가능이에용
또 재밌는사실은
1. x->a로갈때 limf '이존재한다고 원함수가 연속이면 위 극한은 f '(a)라는 점
2.반대로 lim f '(좌우극한)이 존재하고 f '(a)도
존재한다면 이 둘은 다를 수 없다는 점
-->이게 누구나 떠올릴 수는 있지만 이러한 특성을 가진 도함수는 없다는 다르부의 논증이 있지요
도함수의 연속성에 대해서 이런 정리가 있더라구요!
다르부의 부르르함수
수분감에선 이거 고등과정에선 고려 안해도 된다고 들었는데 맞을까요..?
어디 기출이죠..?? 평교사엔 아직 없고 임용 기출로 알고있는데
의대논술
김범준이 도함수 극한 ㅈㄴ까던데 ㅋㅋ
간단하게 생각하면 도함수: 단일 극한, 도함수극한: 이중극한이니까 당연히 다르다고 볼 수 있죠
그리고 진동발산 말고도 x^(1/3) 같은 함수 이용하면 존재성의 문제가 아니라, 도함수 극한을 사용했을 때 '아예 다른 값'이 나오게도 할 수 있습니다 처음 보면 굉장한 충격이죠
궁금하신 분은 핀셋 n제 시즌2 미적분 23을 참조...
!=