f(|x|)=x^3
이 식은 항등식, 그래프도 될 수 없죠?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
와이프 출산하면 주1일 야간수의사 하고 나머지 6일은 아기 보고 싶음
-
직지심체요절 아니라는데
-
한국사 퀴즈 2 8
신라시대의 특이한 신분제도로, 뼈에도 품격이 있다라는 말로 표현되는 신분제도의 이름은? 500덕
-
윤석열vs이명박 7
누가 더 잘했다는 평가 받을까?
-
14124면 동국대 인문 대충 이런 느낌 근데 둘다 아슬아슬하긴 함 극단적인 케이스
-
컷이 좀 낮은 것 같은데 아닌감 4점 정도는 올려도 될 듯
-
오른쪽 아래 방향을 +라 잡으면 가 상황에서의 가속도는 +a, 나 상황에서 A와B의...
-
제가 없는 사이에 무슨 일이...
-
한국사 퀴즈. 5
고려의 왕으로 노비안검법을 시행한 왕은? 1000덕 드림
-
국어 높1에 수학4 기괴한표본이 많음
-
뭐 그렇습니다.
-
난 확실하다 생각하고 찍어버리는데 보류 자체를 못함ㅋㅋㅋ "이렇게도 볼 수 있지...
-
수학 수특 수완 2
선별된 거 없나요
-
어떤 놈이 실내흡연하는데 땡중이 말리니까 어차피 다 같은 연기인데 알빠노 하니까...
-
시작할때 개쫄아서 못풀줄알앗는데 그래듀 풂 흐핳 난도는 쉬운거같긴한데 어쨋든...
-
사만다 final 안하면 원점수 3점 떨어짐;
-
2개 더빼드림 어차피 2개는 확실히 안나오는거면 2개밖에 안걸러준거니까 정없으니...
-
항상 모고 보면 딱 20번 남겨두고 끝나네 이걸 어째 순서를 바꿔야하나;; 저같은...
-
수능 국어영어 노베가 수능 국어영어 개념 공부하는 것엔 매3시리즈로 충분함?
-
경희대 아닌가요?
-
준킬러빨라짐 킬러를이제거의다풀수있음좀느리지만...
-
세계사 퀴즈 2. 13
야마가타 아리토모가 반포한 것으로 신민들아 "천황에 충성하여라"라는 내용을 담고...
-
보정임 무보정은 처참
-
뭔가 그럼 촉이왔음
-
애초에 수험판에 다시 들어오지 않았만큼 행복했다면?
-
모르는 단어로 오답 선지는 안 만든다는데 작년 수능 고전시가의 "겸양"의 뜻을...
-
답이뭐노
-
수학 한정 2컷판독기임 ㄹㅇ
-
닉값마렵네 4
ㄹㅇ.
-
1년 ㅈ빠지게 공부해서 서울대 다 뚫을 성적으로 의대와서 의대 현실보고 다시...
-
세계사 퀴즈 1000덕 19
오스트리아 헝가리 제국에서는 영토를 2가지로 구분했습니다. 라이타강의 안쪽에 있는...
-
노베이스인데 수능 만점 가능할까요
-
다들 이런건 극복 어캐하셨나용 대가리 한번 깨부수면서 비벼보는수밖에 없나..
-
더프 등급컷 2
그거 보정 안 된거죠? 안 된거라고 해주세요..아니 왜 저렇게 높지..?
-
찍맞없이 기하 80점인데 쉽다는 9모도 84고 10모도 80이고... 사설은 잘...
-
코로나 시절 누구없소부터 계속 봤는데 안 좋은 노래가 없네
-
1시부터 지금까지 공복인데 ㅠㅠ
-
맞팔구해요 8
-
귀납적 수열 풀 시간에 딴 단원 기출 더 볼까여... 다른 수열 기출들은 거의 다...
-
실수도 수3은 ㅈ으로 봄
-
국어 실모 95 받아놓고 수학 실모 76 받는.... 국어는 그래도 80점 중후반은...
-
물음표 던지깃 ~!!!!!!!
-
하는김에 현대시까지 21
이감 중요도 aa a중에 안나올거같은거(내가 수험생이었으면 과감히 버릴거) 어느날...
-
작수보다 어려운거 맞죠 ㅠ 컷이 어떠케 될까요
-
오답해떠! ㅎ 3
시발... 이렇ㅅ게 쉬운문제를 씨발!!!!!0
-
이거 6모급이네요.. 진짜 웬만해서 빈칸 자체를 안틀리는데 33/34 둘다 날려먹고...
-
미친 파이널 실모 계획 12
욕심은 많지만 능지가 부족한 자의 최후... 하루에 실모 8개씩 풀고 수능에피 드가자!!!
-
그거전데
-
앞으로 실모에서 미지수 깡으로 두개 잡는 도형문제 내면 10
회사 찾아가서 똥갈기고 옵니다 조심하십쇼 진짜
fx가 다항함수가 아닐 수도 있지
x=1,-1대입시 좌변은 f(1)인데 우변은 1,-1이 나오는데?
fx = (x>0) x^3
(x<0) -x^3
구간 별로 정의된 함수
X>0 일때만 정의되거나
X<=0일때만 정의됨
등호는 어디에 붙여도 ㄱㅊ
굿굿 좋은 밤!!
정의역 제한이 없으면 왼쪽은 우함수인데 오른쪽은 기함수라서 성립할 수가 없는 식이죠
그쵸 이 경우 포함해서, 함수 성질 파악시 미지의 함수식 k(x)=~~로
대칭성, 주기성 파악해도 오류없죠?
네 항등식이라고 가정하면 양변의 식이 완전히 동일한 상태니까 새로운 함수를 잡아서 성질을 동시에 만족하는지 안 하는지 확인하면 돼여
넵 감사합니다 좋은 밤 보내세요!!