하시발 이걸왜 못알아먹지
∀x(x∈A∪A^c) 이 식은 참인데
"모든 x가 A또는 A^c에 속한다" 라는 의미고
이말은 모든x가 원소로서 존재해야한다는 말입니다
모든x에서 x는 무엇이든지 될수있고
모든것(x)이 우리세계(A)나 다른세계(A^c)에 존재한다
는 말입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사진내용 보고 궁금해서 그러는데 제가 3학기 다녀서 학교다닐때 성적 제출할 수...
-
시이나 마히루 3
마히루사마 숭배 좀 해라 ㅇㅇ 저 곱상하고 귀여운 미소녀를 왜 숭배하지 않는단 말인가…
-
251115나 251122 중 하나는 진짜 어려울 것 같은데
-
ㅇㅈ 6
ㅇㅇ
-
나는 성적표보다 0
당신들 얼굴이 보고싶어
-
개당황함 15
-
질문 받습니다. 3
이제 F/A예정이라 거리낄 것도 없음.
-
딱히 요상한 글 쓴 것도 아니라서 특정은 상관없는디 그걸 캡쳐해서 어따 써먹는거임..?
-
걍 막사는거지 뭐 어떻노
-
ㅇ아슬아슬한 여캐일러 투척하고 장렬히 산화해야겠다
-
요즘은 진득하게 못 읽음 익숙한 내용은 덜 한데 처음 보는 글을 진득하게 읽으라고...
-
굳..이...?
-
절대보지말자 ㅂㅇㅂㅇ
-
이름대면 다 알만한 사람과 같이살고있습니다
-
결국 어느 하나를 잘하게 되면 다른쪽을 무의식의 영역에서 체득하게 됨ㅇㅇ
-
잠을 잘수가업승
-
감사합니다 5
히히
-
라떼는 오백원짜리 천원짜리였는데 물가가 많이 올랐노
-
자러간다 너네도 그만 자라 10일 남았는데 조금만 더 힘내자 화이팅
-
잘찍는것도 필요한 태도인것같음.. 표현이 좀 저렴해서 그렇지 그냥 찍는게 아니고...
-
ㅇㅈ 11
글은 터뜨리고.
-
원래 정시러 이미지가 안좋은건 잘 알아요.... 근데 정시 선언하고 담임샘이 좀...
-
비문학 뭐 서술범주 p->q 유기적 연결 이런거 아예 모르고 그냥 쌩으로...
-
나 내일 자퇴하는데? 나 수능 만점받을건데….
-
야 얘들아 13
얼굴 좀 알아보면 어때 걍 당당하게 살아 혹시라도 뭐 인증 모아뒀다 이딴...
-
ㅇㅈ 6
실채점 발표하고 1-2주 뒤인가 그랬었는데 이땐 ㄹㅇ 고대 갈 줄 알았어서 닉네임도...
-
근데 내가 게을러서 못하는거니까... 더 열심히 살자 암암 그리고 이제 그만 잡시다
-
네..
-
내신반영 너무한다.
-
물리 1~3p 1
15분컷을 해야된다고? 적당히 하자 진짜 나 화내기전에
-
26부터 연대도 반영한다는데 그럴거면 정시를 왜 함 현역만 대학가라고?
-
다 나가 5
나 혼자있을게
-
ㅇㅈ ㅋㅋ 2
씹덕게임 하는거 인증 아까 오르비하다가 사는거 깜빡할뻔
-
혹시 풀이에 오류가 있다면 지적해주시면 나중에 와서 보겠습니다. 15번 :...
-
남이랑 비교하게됨..
-
이렇게 감동적인 소설은 없다
-
무단지각떄문에 교내봉사만 2번했는데....... 1학년떄 외출증없이 나갔다...
-
26수능부터 0
정시에 내신 반영하는 학교 많아질텐데 재수하면 좀 그럴려나... 4점 후반인디
-
그게맞다 갑자기자존감좆박네
-
인증타임인가 2
후후후
-
다들 인증만 해서 그런가
-
독서 3틀 문학 3틀 독서론1틀 ( 큼큼) 화작2틀 ( 반성 ) 80 ( 2 )...
-
네 하루 더 지나면 1의 자리 숫자가 됩니다.
-
혼란을 틈탄 3
씹덕 만화
-
행복한 성대생활중이신가
-
어 인증할게 9
에료 이건 기만 축에도 못끼는거같긴한데
-
. 4
잘되어서 행복하게 해주고 싶구나 나 자신.. ㅎㅎ
-
수학 기출만 벅벅 풀어서 니들 감 딱 잡고 가서 비록 허접한 개념력이지만 요리조리...
-
10일밖에 안남아서 개쫄린다 으으
틀리셨습니다. 현대 논리학에서 양화사 ∀x 를 포함하는 명제는 반드시 x의 존재성을 보장하지 않습니다. "모든 x에 대해 p이다" 라는 명제는 설령 x가 존재하지 않더라도 참이 될 수 있습니다
모든 x가 U에 속한다면, 모든x가 일단 원소로서 존재해야만 하는것 아닙니까?
아닙니다... 그 가정이 틀렸어요. 모든 x에 대해~ 라고 진술하는 명제는 반드시 x의 존재성을 가정하지 않습니다.
∀x(x∈A∪A^c) 이식은 참이라고 하던데요?
네 맞아요. 하지만 '모든 x'와 같이 양화사 ∀를 포함하는 명제는 x가 실존하지 않아도 참이 될 수 있습니다.
아니 제말을 잘들어봐주세요. "모든x가 U에 속한다" 가 참이라면 모든x가 원소로서 존재한다는 말이잖아요
아뇨.. 더 이상 그만 우기세요. 그 명제는 x의 존재 여부와 무관하게 항상 참인 명제입니다
아니 제말이 왜틀렸죠?
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
논리학에서 양화사 '모든' 은 반드시 그 대상이 존재해야만 참이 된다고 보지 않으니까요... 우선 존재해야만 한다<<<<이게 틀린 가정이라는 거에요.
∀x(x∈A∪A^c) 이식이 참이니까 x가 원소로 존재할수 밖에 없다고요
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
그게 아니라는겁니다. X의 존재 여부와 무관하게 모든 x라는 표현은 성립할 수 있어요. x가 존재해야만 모든 x라는 표현이 가능하다 보는건 고전 논리학의 관점입니다
x가 없으면 애초에 ∀x가 아닌데요
제말 왜곡하지마세요 모든x가 U에 속하므로 모든x가 원소로서 존재하는겁니다
이 사람 어그로입니다
먹이 주지 마십쇼 선생님
네 그렇게 생각하세요
"x가 없으면 애초에 ∀x가 아닌데요" 이말이 틀렸나요?
어떤원소가 없으면 모든원소라고 할수가 없는데
하.. 왜 그렇게 반응하시죠?
현대 논리학, 특히 20세기 이후의 논리학에서는 '존재'와 '양화'의 개념이 더 명확하게 구분됩니다. 현대 논리학에서의 전칭양화사(∀, "모든 x")는 존재를 직접적으로 가정하지 않습니다. 즉, "모든 x에 대해 P(x)가 참이다"라는 명제가 참이 되려면, 해당 범위 안에서 거짓이 될 수 있는 항목이 없다는 것만을 의미하지, 실제로 그 범위에 속하는 x가 존재해야 한다는 것을 의미하지는 않습니다.
특히 현대 수리논리학에서는 공집합과 같은 개념이 많이 등장하는데, 공집합에 대한 모든 명제는 자동적으로 참으로 간주됩니다. 예를 들어, 공집합에 속하는 모든 x에 대해 P(x)가 참이라는 명제는 공집합 안에 아무 것도 없기 때문에 참으로 간주됩니다. 이처럼 현대 논리학에서는 존재와 무관하게 양화사를 다루는 경향이 더 강합니다.
∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그리고 (모든x에 대해 x가 U에 속한다) 라고할때 어떤x가 없으면 (모든x)라고 할수도 없다고요
위에것도 gpt 답변인데요...
"공집합에 속하는 모든x" 이게 대체 뭔말이죠
잘 읽었습니다. 혹시 '어몽어스가 의심스럽다' 라는 명제도 증명해주실 수 있나요?
하나 더 지적하고 가겠습니다. A라는 집합을 우리 세계에 실존하는 대상이라고 잡았을 때, A^c는 말 그대로 A에 속하지 않는 모든 것이 될 수 있습니다. A^c에 속한다는 것이 반드시 다른 세계에 실존한다는 의미가 될 수 없죠.
A^c에 속한다는 것은 '우리 세계에 실존하는 대상이 아니다' 와 같은 의미가 되고, 여기에는 곧 소설 속 세계와 같이 우리 세계에 속하지만 상상에서만 존재하고 실존하지는 않는 대상들, 우리 세계와 다른 세계에도 없는 대상들, 우리 세계에만 없는 대상들...등등 말 그대로 우리 세계에 실존하지 않는 모든 것들이 들어갈 수 있습니다.
따라서 저 명제가 항상 참이고, 심지어 x가 존재한다 하더라도 그것이 항상 실제로 존재한다로 이어지지는 않습니다....
하........∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그 말은 맞지만 그것이 꼭 x의 존재성으로 이어지지도, 실존성으로 이어지는게 아닙니다.
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
전체집합은 말 그대로 '전체'이기에 님 마음대로 전체를 세계로 한정지으시면 안됩니다.
A가 우리세계고 A^c가 다른세계입니다
그런데 A에 속한다고 반드시 우리세계에 실존한다는건 아니잖아요? 해리 포터나 마블 영화 세계관은 우리 세계에 속하는 것이지만 실제로는 가상의 세계관인것처럼
해리포터가 진짜인 세계가 있을겁니다
해리포터가 진짜인 세계가 있을겁니다
넵!
제가 왜이렇게 고집피우고 난리치는지 이해하실거라 믿습니다
x가 존재한다는 가정이 문제인거 아닌가요? 논리학에 대해선 그리 많이 알지 못하지만 작성된 댓글을 보며 든 생각은 타당성과 건전성에 혼란이 있으신것 같은데... 주장하시는 논증은 타당하지만 x가 존재한다는 명제의 참이 보장되지 않으니 건전성에 결핍이 생기지 않나요? 존재하지 않는 x를 존재한다고 하는 명제의 참 거짓이 문제가 된다는것 같습니다
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
우리가 세계에서 관측불가한 것이 실존하다고 설정하신거라면 그리고 그것들이 전체집합내에 존재한다고 가정하신거라면 주장하시는 논증은 타당하다고 생각합니다. 다만 그것이 과학적으로 가치가 있는지는 모르겠습니다.
쿠쿠리 그저 신
님
1=2라면, 3=4이다. 참임 거짓임?
참요