물리학 1 18번, 20번 문항 풀이
본 게시글의 풀이는 2018, 2024 피직솔루션 내 비례식 원리를 따릅니다.
역학적 에너지 문항인데 저같은 경우에는 운동에너지, 위치에너지들을 비율로 나타내고
이 때 작성된 비례식 끼리의 비례 상수를 맞추는것을 좋아합니다.
비례 상수를 맞추기 위해 곱해주어야 하는 상수 k를 구해지는 방향으로 시선이 좁혀지다보니
무엇을 해야할 지 명확해지기 때문입니다.
간혹, 발문을 수식으로 표현했을 때 문항이 풀리지 않을 경우에는
문항 내에서 s=vt 꼴로 숨어있는 조건이 있는지 체크하기를 권장합니다.
대다수는 s=vt와 W=Fs를 분리된 유형으로 약간 본능처럼(?)느끼는데
그래서 에너지 문항이라는 생각을 하고 s=vt를 떠올리지 않는 경우 구렁텅이로 빠지는 경우가 많은것같습니다.
물체의 처음 위치와 최종 위치에서의 속력은 1:1이므로
운동에너지는 1:1입니다.
높이는 3:1이므로 퍼텐셜 에너지는 3:1이될것입니다.
그리고 물체가 마찰 구간 I, II에서 손실한 운동 에너지는 1:1로 동일하며
이 값은 q에서의 운동에너지의 2/3배이므로 문항에서 주어진 조건을 정리하면 다음과 같습니다.
처음, 나중 운동 에너지 = 1:1 (1)
처음, 나중 위치 에너지 = 3:1 (2)
손실 운동 에너지 = 2:2, q에서의 운동에너지 = 3 (3)
문항 내에서 주어진 조건을 정리해보니 위 세 비례식간의 비례상수를 맞춰주는것이 본 문항의 방향성인듯합니다.
비례식 (1), (2), (3)은 각각의 비례상수가 다르기 때문에 편의상 (3)을 기준으로 (1)과 (2)를 맞춰볼것입니다.
(3)에 의해 p에서의 운동에너지는 5이고 이는 손실량 2이 발생한 이후이므로
처음 역학적 에너지는 7, 나중 역학적 에너지는 3입니다.
처음, 나중 운동 에너지 = 1:1 (1)
처음, 나중 위치 에너지 = 3:1 (2)
(1)과 (2)를 조절하여 세로 합이 7, 3이 되어야하며(비례상수 일치)
각각 1, 2 를 곱해주면 됩니다. 따라서 정리하면 다음과 같습니다.
처음, 나중 운동 에너지 = 1:1
처음, 나중 위치 에너지 = 6:2
손실 운동 에너지 = 2:2, q에서의 운동에너지 = 3
마지막 지점의 에너지로 인하여 0.5mvv=mgh=1 입니다.
ㄱ. p에서 손실된 운동에너지 = 중력과 같은 크기의 힘이 한 일의 양 = 2 = mgh 이므로 d=h입니다.
ㄴ. 처음 운동에너지는 1, p에서 운동 에너지는 5이므로 속력은 1:5에 루트를 씌운 1:root5입니다.
ㄷ. I에서의 운동 에너지는 1+2, q에서 운동에너지는 1+2+2-2 으로 동일합니다.
문항내 조건을 문장별로 끊어 조건을 수식화 해봅시다.
발문 1 : q장력과 r장력은 3:2이다.
C가 정지했으니 장력은 각각 3mg, 2mg가 되어야겠습니다.
그러면 p장력도 3mg, A의 빗면 중력도 3mg가 되어야합니다.
발문 2 : r, p를 끊고나서 A, (B+C)의 가속도는 2:1이다 = 알짜힘비/질량비가 2:1이다.
= 3:1/질량비=2:1, 질량비 = 3:2 = 6m : 4m, B는 3m이됩니다.
발문 3 : r이 끊어진 순간부터 B가 O로 돌아오기까지 걸린 시간은 t0이다.
= B의 속력은 가속 운동의 대칭성으로 인하여
r이 끊어진 순간, O, 정지, O 순으로 0 v 0 v입니다.
여기서 포인트는 0-v구간과 v-v구간에서의 가속도 비 = 알짜힘비/질량비 = (2:1)/(10:4)=4:5이며
속도 변화 비는 1:2이므로 걸린 시간비는 (1:2)/(4:5)=5:8로 이 둘의 합이 t0입니다.
p가 끊어진 순간 O에서의 속력은 B의 속력이며
알짜힘 2mg에 의해 10m짜리 질량이 5t0/13 동안 가속된 속력입니다.
따라서 g/5에 5t0/13을 곱해주면 gt0/13이 됩니다.
간단하게 쓰면 알짜힘이 2:1/ 질량이 5:2에서 가속도비 4:5를 구하고
속력 변화가 v로 세번 일어나면 걸린 시간이 5 4 4 합 t0을하고
5/13에 가속도 1/5를 곱하는 방식이겠지만 그건 그래프가 머리속에 쏙쏙 그려지는 숙련자기준이구
정석적인 풀이 과정은 위에 풀어쓴것과 동일할것같습니다.
이런 풀이가 익숙해지면 나중엔 식 안쓰고 상수만 끄적대는 자신을 보게 될거에요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
덕코주세요...
-
중앙대나 한양대 3
1학년이 반수하기에 편함? 1-2휴학가능여부나 등등..
-
저도 질받할래요 12
선넘질받도가능하다네요 안해주면혼자방에서울거에요...
-
영어 1컷은 90입니다 10
그렇습니다
-
갑자기 궁금하네
-
그래서 컷이 오른거라네요
-
11월 22일 3
솔텍 N제 파트2 좋네요. 과한 문제도 없고 쉬운 문제도 없고...선지 논리...
-
ㄹㅇㅋㅋ
-
생명 지구 컷만 1
오르지마 좀만 내려오면 더 좋고
-
왕하고먹어버려
-
우ㅡ탑ㅡ제 2
우리 탑 제1우스입니다.
-
수학 등급컷 논쟁 12
쓴소리 참고 84도 가능합니다 하는 성격이면 과외 오래 할 확률이 높아요 ㅋㅋ
-
할거 없는데 쎈이라도 풀어볼까
-
집가는 동안 무물보 12
안 해주면 삐짐
-
ㅇㅈ 1
-
모두 굿밤
-
난 도저히 못 보겠던데 10
ㅍㄹ<--취존불가
-
아직 알바 못구해서 돈이 없는데… ㅜㅜㅜ
-
지금 이 헬조선에서 미국으로 뜰수 있다는게 미친 메리트 잖음
-
그냥 순수한 궁금증
-
나도 행복할수잇었을텐데
-
학종 1
생명쪽 학종쓸거면 공동교육과정 들으면 좋겠죠??
-
진짜 맞는말인듯
-
흠
-
편입 현실 조언 부탁드립니다. 아무말씀 이여도 좋습니다 1
저는 이번년도 2월1일까지 군대에서 수능준비를 하다 포기하고 전문대에 들어왔습니다....
-
진학사대로만 주세요 85 2컷이라도 제발 하
-
노래추천받 15
사랑노래 빼고 잔잔쓰한 느낌으루...
-
고1 통과 때 너무 재미없어서 '아! 지구는 내 길이 아니구나!' 싶었는데 그냥...
-
의대생이되고싶음 입시라는 지옥에서 생존해 돌아왔다는 것으로 내 존재를...
-
애니보기.
-
행복하기를 바라는거는 주제넘은 바램이 아니였을까
-
어차피 남들보다 뒤쳐진거 미련 없도록 한번 더하자 에라 모르겠다 학벌은평생남는다니깐...
-
기말 시험이 12월 6일에 끝나는데 언제부터 수능 공부를 시작할까요?? 제일 늦게...
-
여러분들 지금 최근 글들에 댓글이 거의 없다는 사실, 아시나요? 20
다들 따뜻한 마음으로 댓글을 달아주는 청년이 되길 바랍니다 그럼 2만 총총..
-
막장애니 볼건데 5
기대되네 반전이 얼마나 많을지.......
-
집가기 겁나 피곤하다 12
누가 나 납치해서 데려다 줬으면..
-
진짜 손절하고싶다 11
진심 손절하고싶음... 아 진심 역겨워 미쳐버리겠음
-
푼 컨텐츠 후기 글이나 무물보로 공부 꿀팁같은거 작성하신 분들 있으면 공유부탁드립니다!
-
ㄷㄷㄷ
-
수1,2,확통 실력 다 비슷하고 7일 공부량으로 따졌을 때 3일은 수1, 3일은...
-
아예 의미가 없나요…? 3-4칸 떨어진다고 그러던데 그럼 전 지금…제가 7~8칸...
-
통통이고 이번 수능 14, 21 틀 입니당. 겨울에 시대인재가 아닌 타 선생님의...
-
게임 존나 좌우하는데 병신만 잡힘
-
전 심심하니 질문해드림 85
댓 남기면 질문 해드릴게용
-
저 때문에 칸타타님 끌올된거 같아서... 죄송합니다
-
98주면안되냐고 ㅜㅜ
-
으아악
-
운동2시간완뇨 0
존나힘드네 ㄹㅇ 근데재밌음 저녁샐러드 달걀 단백질파우던가 뭔가 먹음 냠냠
-
왤케 투데이 높음
-
학교 학원 외에 취업할 수 있는 분야가 있나요?
첫번째 댓글의 주인공이 되어보세요.