연속함수를 적분하면 연속함수인가요
연속함수를 적분하면 연속험수인가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 이새1기는 가끔씩 같이 먹을 때도 그냥 지가 다 먹으면 먼저 탈주해서 좀...
-
28 29 30 난이도 어느정도였음??
-
ㅗㅗㅗㅗㅗ
-
올해 사문 등급 다들 몇으로 예상하시나요? 홈페이지에 올라와있는 예상 말고요그냥...
-
수제남캐일러 투척. 10
원래색감은 좀더 쨍한데 업로드하니까 잘안담기네요
-
현강 추천 1
이번 겨울방학에 대치동으로 현강으로 공통, 미적 둘 다 들으려고 하는데 손승연T하고...
-
행복회로 2
오늘부터 부산광역시를 믿어볼까
-
지금하면 사람없나
-
그럼 언매왜함...?
-
서울대 무조건 나와야 하나요? 주변에서 지거국 교수들 다 서울대 출신이라 그래가지고...
-
이랬는데 0
짜잔 미적 1컷 85 확통 1컷 92 언매 1컷 91 화작 1컷 93 하면 대입 개재밌을듯 ㅋㅋ
-
애캐토 투표하세요 14
마지막 애캐토래요 https://www.aniplustv.com/event/333
-
강기분 0
25강기분 새기분 독서문학 다들었고 고2 국어2뜨는데 26강기분또 들어야될까요?
-
이제 취직 준비 열심히 해야지 왜 이렇게 한량처럼 노냐고 하시는데 어케...
-
만표도 영향을 끼치나여?
-
한강보려면 전철타고 가야하는데.
-
핵심권장과목이랑 권장과목을 이수하지 않아서 내신 반영에서 불이익을 받을까요? 위의...
-
변표 0
변표 땜에 너무 불안한데 어차피 서울대 연세대는 못 쓰고.. 고려대도 이번에는 사탐>과탐이려나..
-
근데 대입 이해안되는게 11
정시는 그냥 환산점 쭈루룩 엑셀로 줄세우고 커트 끊어서 합격통지 보내면 끝 아님?...
-
쏟아내는것도 방법이라생각함 이것또한 정상인의 사고방식이지
-
ㅈㄱㄴ
-
작년 고경 0
추222락사가 676이었고 실제컷이 677후반이었나요?
-
6or 5 4 , 3 이 가장 좋은 듯... 나도 5. 4 3 써서 5. 4 붙음...
-
미적3틀제외 1등급 언매전원생존 ㅎ.ㅎ
-
이거 어케말림 고2 모고 2~3 왔다갔다 하는데 이원준 들을 실력이 아닌거 같은데...
-
아하하핫 5
으허허ㅓㄱ
-
피램 vs심찬우 2
작년에 피램8개년 기출만 보고 수능쳤었고 독학서가 인강보다 더 맞는 사람이라 굉장히...
-
국어는 ㄹㅇ 언매 왜한거냐.. 좀 현타옴
-
뭐가 좋으세요
-
고삼 정파임.! 강민철 풀커리 탈 예정인데 인강민철 평도 그닥인거같고 ebs연계가...
-
네
-
믿는다~
-
미적도 어케될지궁금
-
입학할 때 성적이 낮으면 입학거부 당할 수도 있나요?
-
살 안뺄거임 수고
-
원래 물지하려던 고2인데.. 요번 수능에 지구가 너무 어려웠다는 평이 많아기도 하고...
-
어렸을때부터 비교를 당해왔나.. 어딜 가든 나보다 공부 잘하는 애들이 있는 것...
-
영어 이름 "Richard" 를 줄여 부르는 애칭 중에는 "Dick" 도 있다
-
언매기준(증발이 적다면) 100점 137 98점 135~136 91~92점 129...
-
과외쌤 다 이런가요 12
걍 내가 꼬인걸수도 있는데 원래 뭐 해달라 뭐 달라 그래요? 음료도 이거 주라 저거...
-
본인 시험 운용을 말해주자면 1-19번까지 아니 왜 이렇게 쉽게 내지? 20번...
-
다 세전으로 하던데 통일하면 편한거아닌가
-
이게 남의 일이라고 생각하니까 이게 그렇게 개꿀잼일수가 없네 진짜 이 재미진걸 재미로 못느꼈다니..
-
난 둘이 만나는 거 좋아해서 예를들어 A,B,C있으면 같은 학교인것만 서로알고...
-
왜 강민철은 닫혀있냐 강평 밈 때문에 그런가
-
현역초반에는 막 컨텐츠 보고 설렜는데 이제 토나옴 그만 보고싶다 너네들….
-
2025 강기분 있는데 이거 들어도 큰 상관 없겠죠?
네
왜요??
미분가능하니까?
그걸 조금 더 수학적으로..? 표현가능할까요? 면접 준비라서요...
정적분으로 정의된 함수를 원하시는건가요??
연속함수 fx를 적뷴했을때 Fx가 무조건 연속인가? 왜 불연속은 불가능한가? 가 궁금해요!
부정적분의 정의가 미분의 역연산이니까??
오 그렇게 해도 오류가 없나보네요 감사합니다!
연속함수를 미분하면 연속함수입니다. 도함수를 다시 적분하면 원래 함수잖아요
헉 이런식으로 생각하긴 했는데 오류가 없을까요?!
대학수준으로 넘어가면 잘 모르지만 고등학교 수준에선 무리 없을듯
?
제 설명에 오류가 있나요??
|x|를 미분하면
-1(x<0)
1(x>0)
인데 이게 미분가능한가요
아! 그렇네요 죄송합니다
적분이 넒이 잖음. 옛날에 사각형 여러개로 적분배운거 기억해 보삼. 연속함수의 넒이를 구하는데 어떻게 그게 불연속일 수 가 있겠음???? 있어도 교육과정 밖임
도함수가 연속인 함수
오 이렇게 말하면 꼬리질문 들어올게 없을것 같네요 감사합니다!