함수추론 자작문제
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
극좌표쓰면?
-
이상한 건 아닌데 남들한테는 보여지긴 싫은(나중에 대학가서 맞팔할 때) 그런 전에...
-
여자들은 뭐함? 남자는 군대가면되는데
-
어느정도 n이냐면, 별의 별 가능세계를 다 열어놓고 살고 있습니다. 예를들어 이...
-
못참겠다 흐흐
-
ㅇㅅㅇ 자~ 일단 바쁜비버를 설명하려면 튜링머신부터 설명해야하는데 튜링머신 지문이...
-
[치대 정보] 치과의사 전문의, 전문과목에 대한 소개 2
치과의사 전문 과목에는 총 11개 과목이 있습니다. 모두 철저한 수련 과정을...
-
ㄹㅇ
-
7일 후 변경 가능, 글씨 파란색이길래 나 가입한지 7일 지났는데?-->어 15만...
-
으으..
-
일반고에서 2학년 때 내신으로 확통 1등급 2등급였음 이번 겨울방학부터 미적...
-
ㅇㅇ
-
수학공부하다 자괴감들고 현타와서 계획표공부 다 쌩까고 확통만 좀 끄적였네요 진짜...
-
통계임요?
-
ㅇㅇ
-
...
-
25수능 언 미 물1 지2 96 98 2 72 98인데 연치 목표면 사1과1이...
-
몇시에 잘거임뇨 2
전 자정쯤
-
내가암
-
밤이 깊었습니다 16
씹덕들은 고개를 들어주세요
-
국어 이원준T 수학 정병호T 바자관에 책 딱 꽂아두면 커뮤 농도 짙어 보여요 거기에 기하까지
-
연애 무조건 할수있을거같음 그니까 일단 자기관리부터 좀 해봐야지…
-
아재개그__ 1
방금 똥을 싼 사람을 4글자로?
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
김재훈 특강 0
언제 또 열리는거임?
-
사실 원, 타원, 쌍곡선, 포물선은 다 같은 도형이에요 ㅎㅎ 14
사영적으로 같거든요. 저 도형들에 빛을 쏴서 다른 평면에 생기는 그림자를 생각해보면...
-
ㅠㅠㅠㅜ
-
지듣노 9
도쿄 가고싶네
-
전 이자 매일매일 주는게 신기해서 토스뱅크에 넣어뒀는데 전보다 이율이 많이 줄었더라구요...
-
2학기는 최소학점듣고 1학기땐 그래도 열심히할거긴한데 반수에 남자라서 지금 사기가...
-
쉽게 닉변하는법 없음?
-
연세대 의대+항상 수석+인기 많음+운동 잘함 연애로 메이저리거도 이겨봄
-
피자 사먹는데 만사천원을 쓰네 ㅋㅋ
-
늦은거임?
-
재밋는 사실 12
직선의 isogonal conjugate는 쌍곡선임을 아시나요 흐흐
-
테크토니4 0
헉
-
인강판끝물에나타나서리트까지단물쪽쪽빼먹다가겠네
-
아아아아아 0
문제가 안풀려 덧셈정리극혐ㅁㅁㅁㅁㅁㅁ
-
소맥 한 잔은 소주 몇 잔으로 쳐야해여?
-
“우린 니네 수능 공부할때 생기부 활동하느라…” 아아…수상기록봉사활동독서기록 다...
-
저도 이제 국어S(황)이 될거예요! 첫시간엔 학평으로 진단을 한다는데 40점은 넘을...
-
시이나 마시로
-
그럼 정시에도 내신이 반영되는 "28수능"을 응시해보는건 어떨까?
-
진짜 개 말도 안 되는 고수. (세계적인 사람임)사실 좀 다른데 같은 캐릭터임
-
응앙응앙
-
10억 받고 자퇴하기 13
할거임? 엔수 불가능.
-
군대갈 때 8
군수하는데 인강, 시대 선생님들 과목별로 한 명씩 같이 데려갈수 있으면 국영수탐...
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요
문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요
아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234