미적분 문제 (2000덕)
첫 풀이 2000덕 드리겠습니다!
(+ 자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
본인 지금까지 탐구,수학에 거의 집중하고 국어 거의 안해서 이제나마 국어 좀 정상화...
-
컨설팅으로 모든 고객이 만족스러운 결과를 얻는 건 불가능하지만 8
그 과정만 순탄했으면 이 정도로 이슈되진 않았을텐데 라는 아쉬움이 듭니다
-
무슨 풀커리타면 푸는 문제양,자료양 이런건 말할것도없고 문제퀄리티,수업난이도...
-
"다보스 포럼" 세계급 지식인들의 포럼 중국이 대만을 침공할 압력이 높아지고 있는...
-
25대비랑 26대비랑 1년인데 차이가 크진 않겠죠? 작년 교재랑 시험지들 싸게...
-
솔직히 너무 비싸서 상담받기가 좀 그랬음..
-
레어 사세요~~~~~ 10
-
레어자랑 5
저 레어 샀어요
-
잼미니들 관련 사업은 항상 2배부터 시작하기때문 교사출신~~ 사업하기 ㅈㄴ 편함
-
건축학과 1
건축학과 희망하는 07인데요 내신으론 화생미적했었는데 정시로 돌릴생각이거든오 내년에...
-
개인에게 맞는 적정 난이도나 강사가 밀리는거같은거 제외하고 순수하게 뭐가 더 좋음?
-
예전같았으면 지금 산화로 30명정도는 갔어
-
설연휴라 몰아서 엄청보냈네 ㅋㅋㅋ 와우
-
지듣노 3
-
10시간 정도 공부해서 채력이 꽤 떨어진 상태에서 풀어서 그런지 좀...
-
그러면 홍보를 이렇게 해야겠다 레어사세요~
-
가불기긴 해 5
사과하면 능력 부족 인정인 거고 안하면 이미지가 안 좋아지는 거니 저 분 아니더라도...
-
근데 정기달이 연상경 확률 좋게 쳐준거에서 무죄라 보는데 3
왜 욕처먹는거임? 입시해보면 알겠지만 99할로 붙는다 말해도 1퍼로 떨궈지는게...
-
나도 얶까ㅈㄴ했는데 커피팔이쉑이라고 그래도 대인배이시긴함 GOAT
-
25만 7퍼고 26부턴 3퍼인가 시립대 조경 가고 싶어서 생지하고 있는데 걍 사탐런해야겠다
-
고대교과 점공 1
이때 되면 최초합은 다 들어온건가요?
-
경제 사정이 좋지 않거나 방황하는 분들을 위해 무료 과외합니다. 무료라고 해서...
-
없음 말고~
-
외대 올해 점수대 전반적으로 보니까 학과 내에서 양극화가 더 심해졌네 모집단위가 더...
-
의견 궁금해요
-
국일만 사려고하는데, 위에 이미지중에 뭐 사야되나요?? 뭐,, 국정원으로...
-
ㅇㅇ
-
짤려버림
-
결국 공증받았습니다. 12
저는 중앙대를 대표해 귀엽습니다. 또한 은행사거리 전체를 대표해 귀엽습니다. 반박...
-
추합 첨 받아봐서.. 나군 13명 모집 예비 6번 다군 8명 모집 예비 7번 인하대입니다
-
7급공무원+5시퇴근 캬캬
-
진학사, 고속 합쳐도 15만원인데다 컨설팅 업체라고 대단한거 쓰는것도 아님. 저...
-
올해 수능 기준 미적사탐으로 거의 만점 비슷하게 받으면 의대 갈 수 있나요?
-
찐따탈출하는법좀 3
리세마라가 답임?
-
난 돈쓰기 싫어서 영어 조진거임ㅇㅇ
-
어떻게 보시나요..
-
최초합권이긴 한데 계산기 쓰면 예비 1.3번 줘서 넘 무섭다 기숙사 살아야해 제발 엉엉.....
-
지방한붙을수있는데 이상한곳써서 연대 문과간사람있음 ㅈㄴ 유명한 컨설팅업체였음...
-
어후..
-
선착순 한명 천덕
-
고려대학교 사범대학 지리교육과에서 25학번 아기호랑이를 찾습니다!! 0
민족고대! 청년사대! 민중지교! 고려대학교 사범대학 지리교육과에서 25학번...
-
수1,수2는 시간쓰면서 하니깐 할만한데 미적분은 가형 21번 30번 있어서 하기가...
-
심특이랑 같이 할 기출 문제집 추천해주세요
-
언냐들 기갈 미쳣따
-
잡담태그달아 1
주세요.
-
좀 야한대 눈 감고 맞추는거지
-
근데 어디까지나 조언+참고용정도로 보는게 좋음 돈 비싼건 맞는데 전 돈 투자한다고...
-
ㅈㄱㄴ? 수업 들어놓고 돈 안내는거요 시범과외 아니었어요
-
나처럼 바로 윗라인부터는 훅 떨어지는 성적을 받으면 됨
f(x)=0, f(x)=1/2 (사실 찍음요ㅋㅋ gg)
y에 0을 대입해보면 f(x)=2f(x)*f(0) => f==0 or f(0)=1/2
f(0)=1/2인 경우.
x에 0을 대입해보면 f(2y)=f(y).
f(1)=c라고 하자. 그러면 n이 무한대로 갈 때 f(2^n)=c이다.
f(alpha)=c가 아닌 alpha가 존재한다고 치자. (alpha is not 0).
n이 무한대로 갈 때 f(alpha)=f(2^n(alpha))=f(2^n)=c이므로 모순이다.
따라서 모든 0이 아닌 x에 대해서 f(x)=c이고, f는 연속함수, f(0)=1/2이므로, f==1/2밖에 해가 없다.
즉, 모든 해는 f==0, f==1/2.
이거 맞나 미적분을 잘 몰라가지고 ;
정답!
앗싸
어떤 실수 d != 0과 실수 a에 대해 f(a)= d이면, f(a+2*0) = d = 2*d*f(0)이므로 f(0)=1/2이다.
연속의 정의에 따라 실수 ε가 존재하여 |x|<ε이면 |f(x)-1/2|<1/4, 특히 f(x)>1/4인데 n = max([log_2(|a|)-log_2(ε)+1], [log_2(|d|)+3])에 대해 |f(a/2^n)| = |2*f(0)*f(a/2^n)*1/2| = |f(0+2*a/2^n)*1/2| = |f(a/2^(n-1))*1/2| = |f(a/2^(n-2))*1/2^2| = ... = |f(a)| * 1/2^n < |d| *1/|d|*1/4 = 1/4이고 a/2^n < a*ε/a = ε이므로 모순이다.
(단, [x]는 x보다 작은 최대의 정수, max(a, b)는 a와 b 중 최댓값)
한문장은 걍 불가능이라 두문장으로
문제 조건 안쓰고 연속 정의로 함요
근데 f(x)=1/2도 안되는거 아닌가요
아 되는구나
케이스 하나 안봤네요
아 문제를 잘못 읽었네 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
굉장히 엄밀한 증명이네요ㄷㄷ
개망함요
f(0)=1 되는걸로 봐서
정확히 말하자면 두 번째 문장은 ‘f(2x)=2f(x)가 성립하고 f(0)=1/2인 함수는 존재하지 않는다’를 증명한 셈...
사실 이게 더 어려울지도