메인글 소신발언
O/X 퀴즈(5000덕)
자연수에서 자연수로의 함수 f(x)가 일대일대응이라 하자(즉, 역함수가 존재한다). 수열 a_n = 1/f(n)에 대해,
은 항상 성립할까?
성립하지 않는 경우 반례, 또는 성립하는 경우 만족스러운 증명을 제시하시는 첫 번째 분께 5000덕을 드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 버근가 그래도 점수는 보여줄 수는 없고 귀여운 아미야 보고 가세요
-
왜케 카와이하냐
-
궁금하시면 할게요…
-
5등급 ㅇㅇ
-
Ai이거 5
19살인데 22 이러는데 늙어보이나ㅠ
-
인증메타 재밌네
-
알려줘
-
집착하고 일희일비하는 모습이 내게도 있구나
-
여기서 더 하면 넘 뇌절이죠? ㅇㅋ 둘다 저임 이제 슬슬 특정 쫄려서 그만하기루 함 감사했습니다
-
@orbihaku
-
그니까 예쁜여르비 ㅇㅈ ㄱㄱ
-
의대 갈려고 n수를 왜함? 국적만 있으면 의대 가능인데 0
어그로 진짜진짜 죄송한데요 이거 관심 좀 가져야 할 것 같아서 제목 이렇게 쓴...
-
우끼끼
-
계속 공부 관련된 것만 추천해줌 ㅇㅅㅇ...
-
이게 맞겟지 개고민되네 언매 내싲은 2떠서 ㅈ박긴햇느데 아 가짜증나 선택과목 그냥...
-
슬프다
-
뭔진 모르겠지만 0
메타가 재밌긴하다
-
잘쳐줘서 기분이 좋다
-
진짜 씨발 0
열불터지게 하네 이 사람들이
-
존잘 존예 인증이라니
-
외로움 하나를 품은 채, 아득한 하늘을 향해
-
토끼상이라는거는 3
앞니드릅게 튀어나왓네를 굴리고굴려둥글게둥글게 표현한건가요?
-
좆같음
-
ㅇㅇ
-
아 이해함 1
옯비언들이 계속 허수표본으로 들어와서ai얼평 낙지가 오염됐구나
-
나 엽사 ㅈㄴ 올렸는데 ㅈ더ㅐㅆ다
-
잘생긴 개씹새끼들이 지들이 못생겼다고 지랄하고 다니네 ㅅㅂ
-
0.6점 ㅇㅈ 1
나쁜놈
-
매출 2조의 그녀
-
일반적인 1인실은 천장도 뚫려있고 뒷문도 밑부분은 뚫려있는데 저 사진같이 사방이...
-
폐기처리다 이제
-
나같이 못생긴사람은 살아남을수가 없구나
-
ㅇㅈ 22
친구 없는 찐따 축하좀 해주세요 …! 여기서라도 축하받고 싶어요
-
그래서 기분이 ㅇㅈㄹ인건가
-
다 1프로 뜸ㅋㅋㅋㅋ 에이아이는 정직하다…
-
사진마다 평가 다름 고로 쓰레기임
-
방금 찍은 거냐 증사냐 어디 가서 찍은 거냐
-
의대 미적사탐 0
현실적으로 어디까지 열릴까요... ㅠ ㅠ 그리고 지금과탐런하는건 개에바일까요?...
-
다시 가볼게요 6
ㅃ2ㅃ2 잠깐씩은 들릴수있어용
-
하…
-
로스쿨 가려면 수능국어 1은 깔고가는 재능이여야하나요?
-
이 미친ai련이 3
감히 우리 젠짱한테 0.6점을줘? 러다이트운동 간다
-
그래그래 0
올해까지 망하면 자살하면 그만이야..
-
본인은 옯생 14개월간 인증 0회임
-
그 벽 어린시절 보고 난 어떻게 생겼었나 갤러리 뒤졌는데 6
그냥슬퍼짐..
왠지아닐것같다
예?
여기서 자연수 집합은(당연히) 0을 포함하지 않습니다
항상 0수렴이면 고대 자퇴함
이러면 댓삭을 못하는데 아
딱봐도 아닐것같은데
f가 감소함수이면 양무한대로 발산한다?
f(n)에서 n 이 무한대로 갈때 f(n)도 무한대로 가는지를 보면 되는거 같은데
n이 무한대로 갈대 f(n)이 무한대로 안간다고 하면 유한개의 자연수를 배정한다는건데 무한대를 유한대에 배정하는게 안될거 같아서 0으로 수렴한다에 베팅해보겠습니다
오
실제 증명도 거의 이 논리에요
you made my day
오오
레전드고수 ㄷㄷㄷ
이거 정리 이름이 뭔가요
딱히 이름이 있지는 않아요
증명 보고 싶으시면, 챗지피티 o1한테 물어보면 잘 답해주더라고요
아니면 내일 중으로 올릴 엡델 칼럼에 저것 해설도 포함되어 있어요