[1000덕] 기하 문제 하나 더 나갑니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 그때 프사 아는분은 조금 있더라구요 그러므로 그때 프사이자 제 첫 프사 댓글로...
-
무만 겁나게캐더니 왠일이냐 예전처럼 리그좀먹어보자
-
뭐지 내가 못해진건가
-
살면서 재밋던거 시간순 30
한자축구축구그림그리기롤축구농구 칼리스데닉스헬스수학수학수학수학지금은 없음
-
이쪽이든 저쪽이든 사고 조심하시고 혹시모를 구급낭같은거 챙기시면 더좋고요 안전 명심하세요
-
너무해! 2
싫어 나는 당근할 거야 히힛
-
진짜 궁금해서
-
30분 전에ㅔ는 꼭 자기
-
ㄹㅇ 개 시끄러움 ㅋㅋㅋ
-
와 발로는 보이스가 잇다고 짱이다하고 가서 그냥 겜 돌리때마다 매일 보이스 키고...
-
잼민이 목소리로 가오 잡거나 깝치는데 개현타옴
-
욕 한 번을 1년에 쓸까말까한 ㄹㅇ 클린 유저
-
채팅을 치면 그냥 게임을 못 이겨그래서 걍 전번 주는 것임 채팅치지말고 전화로...
-
언더테일 진짜 재밋엇음 사실 이미지가 좃망해서 그렇지..
-
안녕 ㅃㅇ 2
나 자는동안 내 글 많이 읽어줘 그런거 지금은 안웃길지 몰라도 꼭 혼자 멍때리다가...
-
답지 활용법. 3
결론은 해볼 수 잇는 아이디어를 다 써보고 답지를 보는 것. 그리고 답지를 제대로...
-
그냥 오버워치를 너무 사랑할 때가 있었는데 역할고정 나오고 정 다털려서 접음 딜러...
-
메이플 공익 ㅇㅇ 유니온 9천이상 본캐 290이상은 메공가자
-
나한테 옵치란 6
바야흐로 롤이 헬퍼때매 망한다 하하캬 논란이 졸라 심하던 시절 옵칠로 갈아타서...
-
시호게이가 풀길 바랬지만 넘 늦게 올렸으니... 낮에 다른걸로 다시 가져와야겠음뇨
-
아니 구속은 0
ㅅㅂ 이거 맞아? 이재명은 안되는데…
-
내 어설픈 논리와 지능으로는 개털릴 확률이 높아서 누가 시비를 걸면 ‘뭐래병신이’...
-
나 ㄹㅇ 지원금 받나 교재 살 수 있남......
-
ㅋㅋ
-
1.수능장에선 니가 평소 니껄로 만들었던 습관아니면 사용못한다. 2.수능날에...
-
둘다 서류합 면접떨 근데 서류경쟁률도 상당히 빡셌음
-
근데 라면이 잡혀갔음 왜인지암? 참기름이 고소해서. 근데 얼마뒤 참기름도 잡혀갔음....
-
잡담볼려고 팔로우하는건데 왜 잡담태그 달라는 건지 이해를 못했었음
-
애초에 거의 혼자하는 게임만 해왔고 다같이 하는 게임이어도 제가 못해서 욕먹는 실력이라...
-
[속보] 법원, 윤석열 대통령 구속영장 발부…헌정사 최초 5
윤석열 대통령에 대한 구속영장이 발부됐다. 현직 대통령에게 구속영장이 발부된 것은...
-
중3겨울 공부량 3
재업
-
맞팔하실분
-
진짜 유배지로 보내버림
-
좆같이 처 못하는 새끼들이 아가리까지 털면 진짜 고려장 시켜리고 싶다니까?
-
o1은 뭔가요
-
롤 정지썰 6
중학교때긴 한데정지를 조금 자주 먹어서 계정은 3개엿음.그 중에 2개가 30일...
-
대신 한번 삔또나가면 던지진 않고 그냥 겜 놔버림 무한 머리박기하고 한타할때도 딜 안함
-
왜ㅠ다들 앉 자
-
✊️✊️✊️
-
잼민이들 많아서 좀만 겁줘도 입꾹닫 잘해줌
-
속보) 구속 3
-
1학년 2.5 2학년 3.25 3학년 5.3 정도이고 진로선택은 3학년 대부분 C...
-
인설약 땀?
-
만약에..한 10살 넘게 많으면 그때도 내가 선생님이 맞긴 한걸까 김칫국 좀 마시면...
-
내 자랑거리 19
겜 중1때부터 한 거 같은데 채팅 정지나 그런 제재 한 번도 안 받아봄 겜 한정 멘탈 킹임
-
사문하고 설자전이 나은듯 물론 그거도 못가
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?
기하황 ㄱㅁㅁ
님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!
3
문제 좋네요
여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요