나형 자작문제
미완성작인데 극한존재 &가우스 다뤄볼려 했으나
계산이 너무 복잡하게 나와서 이정도까지밖에 못함,, 너무쉬운거같은데..
고치고 싶은게
1.(가)조건 좀 어렵게 주기 (ex.정적분으로 정의된 함수)
2.함수가 (0,2)말고 (0,0) 지나게해서 S가 공집합아니라 2개이하 하고싶은데 그럼 계산이 안드로메다..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나도나도 무물보 4
답변은 씻고 와서
-
악몽꿨다 0
메가 모의지원 싹 다 위험으로 떨어지는 악몽꿈…ㅋㅋㅋ
-
재미 또한 중요하기에
-
서점에 미적분1 문제집이
-
???: 저 가채점 때 xx점이었는데 백분위 95로 2 뜸... 분명 메가 채점에선...
-
국영수가 먼저다!
-
30퍼라는데 전체 4문항에서 1문항 못풀면 광탈일까여 확통 거의하나도몰라서ㅜ.ㅜ
-
현역이라 잘 모르겠어서ㅠㅜ 정시 이러면 대학 어디정도 갈 수 있나용 그리고 과탐...
-
올해 근의 공식도 모르고 과탐 아무것도 모르는 노베인데 1년만에 32231 떴다는 떡밥 돌았음?
-
ㅇㅇ?
-
보통 선택틀 공통틀 차이아래컷이랑 위컷중 뭘 말하는거임? 미적 1컷 88이라는건 올...
-
누가 더 백분위 높을것같으신가요?투표좀 부탁드립니다
-
ㅈㄱㄴ 나루토 한권 읽고오겠음
-
점메추 7
ㄱㄱ
-
88인게 행복할 수 있는 사람들도 있음
-
집앞벤치 입갤
-
86~89 중에서
-
엽떡 기다리며 무물하기 18
-
사문 39점인데 사문 2가 떠야 최저를 맞추는데 다들 어떡하셨을 건가요? 일단...
-
할일도없고
-
고3 담임 쌤이 상담 때 말해줌
-
마음껏 해주세요 수위제한X
-
근데 다들 저 모르실듯
-
배신한 아내에 재산 빼앗긴 '퐁퐁남'…근조화환 뜬 네이버 결국 3
여성혐오 표현으로 논란을 불렀던 아마추어 웹툰 ‘이세계 퐁퐁남’이 네이버웹툰...
-
엽떡 맛있당 1
굿
-
그럼개꿀인데
-
오늘 오전에 열린 의협 비대위 브리핑에서도 협회장이 신입생 모집정지를 외치셨는데,...
-
배고프신분? 9
으히히히히히히히히히
-
이러다가 쪄 죽겄다
-
폰잘알 있나요? 4
지금까지 쓰던건 아이폰11이고 이제 16 or 16Pro 갈아탈려고 하는데 어떤게...
-
essence 12] 같은 단어를 대상으로 형태적인 차이를 만드는 이유, inflection에 관하여 0
같은 단어를 대상으로 형태적인 차이를 만드는 이유는 무엇일까요? 텍스트에서 단어의...
-
그래서 s뱃만 보면 너무 부러움
-
바로 스카로 출발
-
헤헤
-
올해 확통 1등급 비율.. 0.5퍼는 되려나
-
기하 질문 4
기하 단원마다 독립적인가요? 아니면 앞단원 학습 안하면 뒷단원 못하는 구조인가요?
-
닭강정먹고싶다 16
ㄹㅇㄹㅇ
-
시루스 등장 6
컨버전스홀 3층 어딘가
-
습하습하~ 2
습하손익 습하손익 어~
-
제가설의를꿈꾸어도될까요 10
우우 미필5수지사약따리 수학86점영어2지II2등급따리도 +1수로 설의를...
-
이걸 직업으로하긴 좀 그렇지만 알바하긴 괜찮은듯. . 한번시킬때 3,4천원이니 ㅋㅋㅋ ㅠ
-
사탐 백분위 99 95 인데 어떤게 유리?
-
최소한 팩트로 훌짓을 하든지 말같지도 않은 소리 좀 하지마라 다른거 다 그렇다 쳐도...
-
교차해서 온 협문에 희망은 없다.. 사실 근데 연뽕 고뽕 차고 싶으면 와도 됨...
-
하 벽느꼈다.. 4
같은반 친구가 올해 수능 수학시험지 가져와서 30분컷내고 다맞추는거보고 심란해짐..
-
학교에서 진행하고 있는 프로젝트인데, 주제가 수능 관련된 것이라 오르비언들의 힘을...
-
이원준<<국어강사goat
-
마킹 실수함 0
미적분 풀거 다 풀고 검토하는데 미적 24번을 잘못 계산한거임.그래서 그걸...
-
라는 생각을 하는 중
-
화작87 1
2될만한가요? 희망이 있을려나요 ㅜ
f(x)가 3차함수이면 나 조건이 성립할수가 없는데요 나 조건이 성립하려면 상수함수여야 하니깐요 g(x)가 s조건에 f(x)대신 들어가야 하는거 아닌가요
아아 저기에 t (x)요
네?? 무슨 의미죠??
T (x) 전체 함수요 f g가 3기준으로 좌우인
T가 3차함수라는 건가요??
저 위에 나와있는대로 x가 3이하면 삼차인 f (x) 3이상이면 2차이하인 g (x)요
..? 그거랑 상관 없이 나 조건에 의하면 f(x)는 3차함수일수가 없는데요..??
그거 그리는 게 문제임 ㅎㅎ
나 조건 자체가 항상 상수함수라는 의미인데요..?? 3차함수가 어떻게 저 조건을 만족하죠..?
(0,2) 지나는 함수를 죽 이어그려서 (2,3) 에서 접하고 내려오면
가우스로 변환했을때 상수함수 y=2가 나오다가 x=2에서만 빵꾼데 빵구는 극한값과 관련 x
그 부분은 맞긴한데.. X<0인 부분에서는 조건 나가 성립할수 없지 않나요
f (x)정의역 기준으로 0에서 3까지니까 그안에서만 만족하면되요
아.. 그렇군요 죄송합니다 x>=0을 못봤어요..
문제가 너무 난해해서 그래요 ㅋㅋ 도저히 이이상으로 못하겟음
근데 거까지 하시면 그만 하셔도 될듯 그다음 계산 저도안해봄.. 그냥 아이디어만 써보고싶어서
g (x)가 정확히 뭔지 까지만 알면 맞춘거
궁금한게 있는데요 g가 다항함수라는 조건이 없어도 상관 없나요??
다 조건때문에 2차이하 아 다항함수라고 해야 정확하갯내요
근데 저도 그럴까 생각하다가 교과서에따라서는 상수함수가 다항함수에 포함안된다는 것도있어서 애매해서 그냥 뺏어요ㅋㅋㅋ
전 로그함수 때문에 신경쓰여서.. 이러면 변수가 너무 많아져서요
아하.. 저희땐 로그,지수함수를 안배워서 그런거 생각도못함
습작이라 오류가 많음 ㅋㅋ
이 문제는 아이디어는 좋은데.. 얼핏 봤을때는 주어진것만으로는 최솟값 구하는게 불가능할거란 생각드네요.. 내일 아침에 일어나서 직접 풀어봐야 확실해지겠네요..
일단 f(3)=2고 x=2에서 극대 인것 정도만 보이네요
친구들 한테 문제 주면 어렵다고 안풀라하는데 달빛님은 항상와서 저랑 놀아주고 오류도 고쳐주셔서 고맙네여 ㅎㅎ
ㅎㅎ뭘요 취미 입니다 앞으로도 많이 올려주세요ㅎ