미적분1 자작
오류있으면 지적점여
+수정
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수12 해도될까요..! 지금 풀어봤는데 사점자리 두세개 빼고 다 모르겠어서요.....
-
미치겟뇨
-
독학gg 모타겟쏘
-
유저 상당수가 미필 남성인 사이트, 오르비. 그러나 실상은 국방부와 긴밀한...
-
계단 오르기도 쉽지 않음뇨..
-
기하임. . .
-
키작남 여자들이 싫어잔뇨..
-
짜파궤리 무롤림 0
-
기하 6
내년 공대 졸업예정인데 메디컬 목표로 수능 칠 계획..!! 언매 생 지 이렇게...
-
갓반고 3점대는 일반ㅂㅗ다 더 빡쎄죠?
-
기존에 지1을 하고 있어서 화1을 다른과목으로 바꿀려고 하는데 추천 해주세요. 제가...
-
옮밍아웃하고 싶다
-
Team 생2 홧팅!
-
본인이 찐 I 내향형이고 사회성 부족해서 회사생활 힘들거나 하는 경우 제외하고...
-
저랑 만나싷분 5
지금만나면 오마카세
-
2026 모집정지 << 이거 현실화되면 team07은 어케되는거지 설인문 라인이었던...
-
고대분들 0
학교 복전 쉬운편인가요??
-
다군도 불안하긴 한데 가군 안정지원이 나으려나요 가군에 연고계약 지금 텔그는...
-
정시를 처음 넣어봐서 그러는데 광명상사 한서삼 라인 봐주는 컨설팅 하시는분...
-
풀이에서 틀린부분 있나요? 확률 문제 N을 B라고 잘못쓴거 말고용
-
국어과외하고싶다 0
내 사고방식을 이식시켜줄텐데
-
어덕해
-
음 옯비 4년째 보고있는데 매년 울분에 찬 저격과 글삭당하는걸 봐온지라 컨설팅...
-
중대 마피아가 누구죠?
-
수학 모르겠어요 16
루트 알파n - 루트 베타n 어떻게 구하죠… 흑흑
-
작년 기출은 분명히 다 쉬웠는데 왤케 빡빡하게 낸 거지…저만 그랬나요.. 계산도...
-
허수긴 하지만 2
내년에 사탐으로 한 번만 더 해보구 싶다
-
내년에 연세대 수리논술을 볼건데 1월부터 준비하려고 하거든요.. 누구 들을지...
-
아 기분좋다 1
푹신하고 따뜻한침대에서 뒹굴면서 오후에 오르비하기
-
지고쿠 지고쿠
-
허거걱
-
원피스입고 신검받고 계셨음
-
같은과 거리 비슷 어디감?
-
목소리부터 생긴거까지 다 여자였는데 심지어 엄청 고우셨단말임… 근데 의사랑 말하는데...
-
올해컷 2
언매1컷91 수학1컷86(확통 93) 영어1컷88 한지 1컷 45 사문1컷 45 이게맞음뇨
-
https://m.dcinside.com/board/sdijn/1500322 올해...
-
무신사에서 3
세일하는데 25마넌 씀 히히
-
ㅈㄱㄴ
-
어디가 더 아웃풋이 좋나요?
-
1) 풀이.f(x)는 삼차함수이므로 중간값정리에 의해 실근을 하나 이상 가진다.f가...
-
생2하는게 맞나싶다 10
진짜 주변에서 다말리네..
-
수능성적표 조기발표는 없나요?
-
나 고대좀 가자 제발 ㅜㅜ
-
그러면 1학기 다니고 휴학해서 삼반수후에 바로 1월입대하면 시간손해 없는건가
-
ㄱㄱ
-
문과 정시파이터고 모고 2~3뜨는 수준이면 닥 확통인가요? 정시로 돌린지 얼마...
-
학부대학은 무전공인거 같은데 자유전공은 과 선택 제한 있나요? 고자전 드가서 공대...
-
올해 성불하는 03이든 1년 더하게 된 03이든 모두 행복하자
-
등급컷 희망회로 5
국어 언매 89 화작 93 수학 확통96 미적84 기하88 경제42 (가채점 입력한...
선라이크.
마지막에 잘못적었어요 ㅠㅠ f (x)의 x절편값이 최소일때로 생각해주세요
수정완료
f(0)이 음수인지 양수인지 나오면 더 깔끔하지않을까요오? 인터그랄f(x) -2에서 0까지가 max니까 기울기가 음수인 일차함수건가... (수정전)
(가)조건 잘 모르겠... 미2인줄알고 바로 e떠올렸는데ㅠㅠ 어캐 푸나요?
가 조건풀면 음수인지 양수인지 나와요
(가)조건이 로그가 정의되야 되는 조건이니까
밑이 0보다 크고 1이 아니어야되고 진수도 0보다 커야되니
g'(x)>0 g'(×)가 1아니고 g (x)>0 까지 뽑아내고
자연수가 되야하고 g (x)가 다항함수니까 g (x)차수를 k차로 잡고 (가)식= n (자연수)놓고 풀면 n,k가 나올거에요
그다음은 g'(x) ^n = g (x)또 풀고..
그다음은h 풀고.. g(x)찾는게 어려울거에요
23나옵니다 확인해주세요
오답
어떻게 푸셨나여
N=2나오고 g(x)는 2차 나오고 (가)조건 이용하면 g의 도함수는 1차고 f의 x절편이 최소가 되려면 (0,1)을 지나야 되니 g= 1/4(x+2)^2 나와서 y=0 x=2,-2 f( x) 로 둘러쌓인 넓이를 구했죠
(나)조건은 1차함수라고 해석해서 x+1나왔습니다
x절편 최대로 했어야 했네요.. ㅈㅅ 다 맞게푸신거 맞아여
g(x) 다항함수인건가요?
아 언급있네요 죄송함다
그리고 x절편이 최대일때 아닌가요 그럼 그때 x절편이 -1인데여
그럼 답 17/3 20나오네요
네네 맞아여.. 오늘 학교에서 생각나서 수정했는데 잘못적어도 제대로 알아 들으시네여 ㅋㅋ
ㅋㅋㅋㅋ 문제가 그럴 수 밖에 없더라구여 ㅋㅋㅋㅋ 이 문제 (나) 조건은 규토 미적에서 이미 나왔던 표현이군여.. 뭐 문제 전체를 평가하자면 전 제가 풀었던 자작 문제중 손꼽을 정도입니다 정말 참신하고 재밌었어요 ㅋㅋㅋㅋㅋ 이 문제 혹시 제가 타이핑해서 출처를 밝히고 써도 될까요 정말 좋았어요
네네 그럼여 저도 규토님 조건보고 썻어요 ㅋㅋ
원래의도가 작년 b형30번처럼 식하나만 주고 그 식에서 최대한 많이 조건을 뽑아내서 조각하나하나 맞추도록 하는 문제를 만드는 거였는데 제 생각엔 h결정하는게 좀 아쉬운듯 해요 x절편말고 참신한게 없을까..하는
저는 지금도 충분히 좋아요 ㅋㅋ 제가 이 문제를 처음 봤을때 조금 당황했거든요 ㅋㅋㅋ 상당히 생각할 게 많더라구요 ㅋㅋ g'(x)>1을 결국 유도하게 하는게 정말 좋았어요 이건 해설도 써봐야겠네요 굳굳입니다 ㅎ
감사함다 ㅎㅎ
아 그리고 타이핑쳐서 문제 만드실 거면 x=-2,2 와 y=f (x)로 둘러쌓인 부분 넓이보다
그냥 인테그랄 -2 ~ 2 |f (x)| 가 더 깔끔할 것 같아요 보시고 그냥 더 괜찮아 보이는걸로 만들어주세요
네네 ㅋㅋ 해서 올려드릴게여
올려드렸어요~