[박주혁t FINAL] 수능대비 공도벡문제 풀고갑시다~
[개정수학] wp리뉴얼 full.pdf
우선 풀어보시고요^^ (이과 한정)
네, 오르비클래스 박주혁입니다.
이 문제는 제가 지난번에 올린 무료자료
(확통자료 제외하고 모든문제 해설인강 완강함!)
에 있는 [개정수학] wp 리뉴얼 에 있는 24번문항이고요.
베르테르님이 제공하신 문제중에서, 어디에도 공개되지 않았던 문제이기도 합니다.
난이도가 상당히 있어서
강의듣지 않는 친구들/ 현강친구들의 질문이 꽤나 많았던 (쪽지등으로) 문제입니다.
그래서,
제 수업을 도와주시는 조교님이 완전 예쁘게 지면해설을 써 주셨습니다.
문제 풀어보시고, 해설도 보세요~
네^^ 답은 1번입니다.
마무리 학습에 도움이 되길 바라며,
지면해설 써주신 조교님에게도 감사인사를 전합니다^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
폰케왔다 1
내일유심만오면 나는새폰흐흐
-
담배를 펴 말아 3
-
그거 앎? 0
지우 피카츄 대머리임
-
예체능이고 모고에비해 수능좀망함 그래서 성대 생각하다가 대충 건동홍라인 대학...
-
면접 준비하기에 gpt 4o랑 클로드 3.5 sonnet중에 뭐가 더 좋은...
-
캬 8
금삐까츄 캬
-
긍정적으로 마인드로 352일 공부하기 8일차 오늘의 소확행 : 어제는 사격 0발...
-
생1 유전 공부하다 파타우 증후군이 뭔지 검색해봤는데 1
충격적이네요.... 꿈에 나올까 무서워요ㅠ 오늘은 엄마랑 자야할거 같아요
-
사랑니 뺐는데 0
운이 좋았나봄 지금까지 온 치과 중에 젤 안 아팠음...
-
3월까지 깨작깨작하다가 3월부터 풀 악셀 밟으려는데 어떰 님들은 언제부터할예정?
-
리처드 파인만을 기억하세요 파인곳이 만, 튀어나온 곳이 곶입니다
-
쭵쭵
-
지금 내가 전공공부를 하고 있지 않았을텐데 하지만 괜찮아
-
https://orbi.kr/0003380751
-
화장하는 남자? 3
이거 쉐딩하는 전용 맞나요??
-
김기현 아이디어 수1.2 현강 숙제가 얼마나 되나여
-
캬캬
-
이유가 뭐냐고오오오오오옷
-
"침대"
-
냥대 에너지공학과 되나요?
-
합격예측 체험해봤는데 대성, 텔그, 진학사 다 안정을 말하는데 메가스터디 혼자 상향을 외치고 있네
-
슈퍼소닉 전에도?
-
현역 노배인데 김승리 올오카나 강기분 같은걸로 기출분석 방법만 배우고 혼자...
-
미적분에 도움되려나
-
그분도 최저만 맞추면 꿈의대학 가는거였잖아 그게 나잖아요 ㅠㅠㅠ 최저맞추려고 무한 N수중..
-
며칠전까진 할게 좃도없어서 심심했는데 운동도 해야하고 영화도 봐야하고 책도...
-
일부러 과행사도 동아리도 아무것도안들어갓는데 대형과가 아니라 쉽지않음 그냥 사람이랑 안엮이고싶은데
-
ㅈㄱㄴ
-
아침 점심만 먹고 저녁 안 먹기 ㅇㄸ? 두끼 먹는다고 머리 안 돌아가는 건 아니니까 걍 안 먹을까
-
현 고2이고 대학 합격한 것도 아니지만 질문해봅니다 현재 공대 희망하고 있는데,...
-
중3 겨울방학 때 가족들이랑 해외여행갔는데 거기서 뭐 연령제한? 확인받는게 있었음...
-
40대 이전 변호사들은 로스쿨 출신 변호사로 보는게 맞나요?
-
오프닝 노래까지만듣고 그냥 잤음... 오늘은 꼭 1화 다 봐야지....
-
나는과연 호감인가 10
-
카르텔 ㄷㄷ
-
양심고백 17
오늘 애니 한 편도 안 봤음
-
중독돼버렷
-
인싸 모자 안에서 머리카락으로 조종하면 사실상 내가 인싸인거임뇨 노벨상은 확정인 거임뇨
-
미친척하고 숙대 3
영어 2인데 상향으로 미친척하고 숙대 넣기도 무리일까요…
-
백종원 죽는다
-
미적 76 2컷 4
공통 5개 틀리고 미적 1개 틀린 76인데 2컷 안될까요?
-
못참고 사버렸다 2
2029 수능...봐야겠지?
-
영어 조교 0
교재 검토 같은 일을 하는 조교는 보통 언제 뽑나요? 영어로 유명한 팀은 어디가 있을까요?
-
올리버 색스 6
대단하심.. 제가 신경과/신경외과에 관심을 가지게 된 계기이기도 한 분 나중에 저서...
-
미적이랑 지구 1컷에 대한 얘기가 많은데 뭐가 더 현실성이 없는지 개인적인 의견...
-
화미물지 97 84 44 41 (원점수) 영어는 4등급입니다. 추합가능할까요?
-
생1 지1이랑 각각 비교해서
-
평일에 잠을 충분히(6시간)잤음에도 불구하고 진짜 빡시게 공부한 날에는 너무...
-
와 이 돈주고 아이스크림을 먹는다고? 아이스크림 맛도 일반 요거트 아이스크림이랑 별...
구s1의 중심인 0,2t,t 를 직선 l이 지난다고 하셨는데 왜 그런거죠??
방향벡터가 0,2,1 인 직선이 중심을 지나는건 알겠는데 왜 하필 원점을 지나고 방향벡터가
0,2,1 인 직선이 구s1의 중심을 꼭 지나는건지 이해가 잘 안가요.
원점이 왜 갑자기 나온거죠?
중심좌표가 (0,2t,t) 이므로,
중심의 자취를 구하면 x=0,y/2=z/1 인 직선이
됩니다. 그래서 직선이 원점을 지나는 것 이고요~
혹시 몇번정도 난이도로 생각하시고 제작하신건가요?
역시 29번 공도 난이도로 생각하신거겠죠??
제가 제작한것은 아니고 베르테르님이 제작한 문제이고요, 객관식의 탈을 쓰고 있지만 난이도는 29번대비 이지요^^
샘 손해설 생각보다 훨씬글씨체가 깜찍?하시네영 ㅎㅎㅎ 잘보았슴다
조교님이 워낙 깜찍하신 분이라서ㅋㅋ
수능 29번이 이것보다 어려우면 바로 버릴것 같네요.. 베르테르님 넘나 대단..
난이도라던가 문항적중의 의미보단,
멘탈연습하자는 의미로^^
나름 실모기벡풀면서 잘만다생각했는데 불안해지네요... 이정도면 30번급 아닌가요
30번은 미적분으로 연습을^^
난이도가 30번급인가요? 음 그정도인가...
yz평면으로으로 단면화해서 풀면 금방 보이네요. 특히 임의의 t에 대해 성립하기때문에 단면화한 상황에서 S2,S3를 yz에 정사영시킨 원을 S'이라 하고
S1의 중심을 z=1/2y로 이동시키면서 관찰하면서
푸는방법도 있겠죠ㅋㅋ 결국 원 세개 겹친 넓이
구하는게 제일 까다롭네요
네^^ 제시하신 방법도 좋은 방법이네요~
출제자도 그래서 특수한 상황을 주고, 면적을 구할수 있게 한 것 같습니다.
마치 수능이 그러하듯이~
좋은 문제 감사드립니다 박주혁 선생님, 베르테르님~
근데 수능수학에서 이와같은 특수한 상황 외에도 넓이를 구할 수 있나요?그니까 제 말은 원들이 서로의 중심들을 지나 아름답게 딱 3등분이 되는...그런 상황말입니다. 절차대로 풀긴 했지만 애매한 경우를 줄 것 같지 않은 생각이 들어서 풀면서 이와같은 특수한 상황이 예상이 되서요.
이 기출정도까지만 하실수 있다면 될듯 싶은데ㅎㅎ 제생각입니다
곰블릭님ㅋ 이문제 보고나니까
베르테르님이 이 문제에서 영감을 얻어 3d로 확장된 상황을 만드신 것도 같네요~
네, 그동안의 상황을 보면 특수한 상황들을 많이 주긴 했지요~
사실 뭐 그런 상황을 예측해서 풀어나가기 보다는,
조건을 해석하는데 충실하면 어떤 상황이 나오게 되고,
그렇다면 그 상황에서는? 이라고 논리를 전개해 나가는 연습을 하면
될 것 같아요~