제 2 교시

수학 영역(가형)

1	2	3	4	5
2	2	4	5	2
6	7	8	9	10
3	3	1	1	(5)
11	12	13	14	15
2	3	5	1	3
16	17	18	19	20
1	4	4	4	5
21	22	23	24	25
5	12	270	27	300
26	27	28	29	30
225	2	7	990	18

I . 2015 교육과정 단원

① 확률과 통계 (9) 경우의 수 17, 23, 29 확률 5, 11, 19 통계 7, 14, 25

② 수학 1 (10)지수함수와 로그함수 1, 4, 27삼각함수 13, 26수열 10, 15, 21, 24

③ 미적분 (11) 수열의 극한 2, 8, 18, 22 미분법 3, 12, 28, 30 적분법 6, 9, 16, 20

난이도	미적분	수학1	확률과 통계
1-3 [2점]	2	1	0
4-13 [3점]	4	3	3
14-18 [4점]	2	1	2
19-21 [4점]	1	1	1
22-25 [3점]	1	1	2
26-27 [4점]	0	2	0
28-30 [4점]	2	0	1
총합	12 [39점]	9 [30점]	9 [31점]

Ⅱ. 문항 분석

문항	답	과목	단원	연계
1	2	수학 1	지수함수와 로그함수	
2	2	미적분	수열의 극한	
3	4	미적분	미분법	
4	5	수학 1	지수함수와 로그함수	
5	2	확률과 통계	확률	
6	3	미적분	적분법	
7	3	확률과 통계	통계	0
8	1	미적분	수열의 극한	
9	1	미적분	적분법	0
10	5	수학 1	수열	
11	2	확률과 통계	확률	0
12	3	미적분	미분법	
13	(5)	수학 1	삼각함수	
14	1	확률과 통계	통계	
15	3	수학 1	수열	
16	1	미적분	적분법	О
17	4	확률과 통계	경우의 수	
18	4	미적분	수열의 극한	
19	4	확률과 통계	확률	
20	5	미적분	적분법	
21	5	수학 1	수열	
22	12	미적분	수열의 극한	
23	270	확률과 통계	경우의 수	
24	27	수학 1	수열	
25	300	확률과 통계	통계	
26	225	수학 1	삼각함수	
27	2 7	수학 1 미적분	지수함수와 로그함수	0
28	990	의식문 확률과 통계	미분법 경우의 수	
30	18	작물과 공세 미적분	지구의 구 미분법	
30	10	비주신	一一一日	

1. $\sqrt{32} \times 2^{-3}$ 의 값은?

[2점]

- ① $\frac{1}{2}$ ② $\frac{\sqrt{2}}{2}$ ③ 1 ④ $\sqrt{2}$
- **⑤** 2

 $\frac{\Xi}{\Xi}$ 이: $2^{\frac{5}{2}-3} = 2^{-\frac{1}{2}} = \frac{\sqrt{2}}{2}$

- $\therefore 2$
- 2. 수열 $\{a_n\}$ 에 대하여 $\sum_{k=1}^{\infty} \left(a_k \frac{2k^2 + 3}{k^2}\right) = 1$ 일 때, $\lim_{n \to \infty} a_n$ 의 값은?
- 1
- 2 2
- 3 3
- 4
- **⑤** 5

풀이 : 급수 $\sum_{k=1}^{\infty} \left(a_k - \frac{2k^2 + 3}{k^2} \right)$ 가 수렴하므로

 $\lim_{n\to\infty} \left(a_n - \frac{2n^2 + 3}{n^2} \right) = 0$ or.

 $\lim_{n \to \infty} \frac{2n^2 + 3}{n^2} = 2$ 이므로 $\lim_{n \to \infty} a_n = 2$ 이다.

- \therefore (2)
- [2점] 3. $f(x)=8\ln(x+3)+3$ 일 때, f'(-1)의 값은?
- ① 1
- 2 2
- ③ 3
- **4**
- **⑤** 5

 $\frac{\Xi}{\Xi}$ 이 : $f'(x) = \frac{8}{x+3}$, f'(-1) = 4

- ∴ 4
- **4.** $f(x) = a^{-x}$ 이고 두 자연수 m, n에 대해 f(m) = 216 f(n)일 때, 자연수 a의 최솟값은? [3점]
- \bigcirc 2
- ② 3
- 3 4
- **4** 5
- 5 6

풀이 : $f(m)=a^{-m}$, $f(n)=a^{-n}$ 이므로 $a^{n-m}=216=6^3$ 이다. n-m가 정수이므로, n-m=3일 때, a=6으로 최솟값을 가 진다.

 $\therefore \boxed{5}$

- 5. 두 사건 A, B는 서로 독립이고, 다음 조건들을 만족한다.
 - $(7) P(A-B) = P(B-A^{C})$
 - $(\downarrow) P(A^{C} \cap B)P(A \cap B^{C}) > 0$

 $P(A \cap B) = kP(B-A)$ 일 때, k의 값은?

- [3점]
- ① $\frac{1}{2}$ ② 1 ③ $\frac{3}{2}$
- **4** 2
- $\bigcirc \frac{5}{2}$

풀이 : P(A-B)=a라고 두면, $P(A\cap B)=P(B-A^{C})=a>0$ 이다. P(B-A)=b라고 두고, 두 사건 A,B가 서로 독립이므로 $P(A) P(B) = P(A \cap B)$ 에 식을 대입해주면, $2a \times (a+b) = a$, $a+b=\frac{1}{2}$ 이다. 따라서 $P(A^C\cap B^C)=b>0$ 이다.

따라서 $k = \frac{P(A^C \cap B^C)}{P(B-A)} = \frac{b}{b} = 1$

 \therefore (2)

※ 위와 같은 문제는 대부분 그림이나 표로 풀어야 한다. (그래 야 어떤 값을 미지수로 둘지 쉽게 보인다.) 그리고 위 문제와 같이 비율(k)을 구하라고 했을 때는, P(B-A)나 $P(A \cap B^C)$ 와 같은 값을 구체적으로 구할 필요가 있는지 의심해 봐야한다.

- 6. x = 4에서 x = 9까지 곡선 $y = \frac{2}{3}(x-1)^{\frac{3}{2}}$ 의 길이는? [3점]
- ① 12 ② $\frac{37}{3}$ ③ $\frac{38}{3}$ ④ 13 ⑤ $\frac{40}{3}$

풀이 : $f(x) = \frac{2}{3}(x-1)^{\frac{3}{2}}$ 라고 하면, $f'(x) = (x-1)^{\frac{1}{2}}$ 이다.

 $\int_{-1}^{9} \sqrt{1 + (\sqrt{x - 1})^2} dx = \int_{-1}^{9} \sqrt{x} dx = \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{-1}^{9} = \frac{38}{3}$

[EBS 수능완성 변형문제 - 132p 필수 유형]

7. 이산확률변수 X가 가지는 값이 1, 2, 3, 4이고,

 $P(X=4)=\frac{1}{4}$ 이다. P(X=1)=2P(X=2)=3P(X=3)일 때, P(X=2)의 값은? [3점]

- ① $\frac{7}{44}$ ② $\frac{2}{11}$ ③ $\frac{9}{44}$ ④ $\frac{5}{22}$ ⑤ $\frac{1}{4}$

풀이 : P(X=1)=2P(X=2)=3P(X=3)=k 라고 하자.

$$P(X=1)=k$$
, $P(X=2)=\frac{1}{2}k$, $P(X=3)=\frac{1}{3}k$ 이다.

P(X=1)+P(X=2)+P(X=3)+P(X=4)=1이므로

$$k + \frac{1}{2}k + \frac{1}{3}k + \frac{1}{4} = 1$$
, $\therefore k = \frac{9}{22}$

$$P(X=2) = \frac{1}{2}k = \frac{9}{44}$$

 $\therefore 3$

수능완성 가형 132p - 필수 유형

필수 유형. 이산확률변수 X가 가지는 값이 1, 2, 3, 4이고,

$$P(X=2) = \frac{1}{6}$$

P(X=1)=P(X=3)+P(X=4)

이다. P(X=1)의 값은?

- ① $\frac{1}{4}$ ② $\frac{7}{24}$ ③ $\frac{1}{3}$ ④ $\frac{3}{8}$ ⑤ $\frac{5}{12}$

답:⑤

- 8. 등비수열 $\{a_n\}$ 에 대하여 $\lim_{n\to\infty}a_n$ 은 수렴하지 않고 $\lim_{n\to\infty}(a_n)^2$
- 은 수렴한다. $a_1 = 2$ 일 때, $\sum_{k=1}^{3} a_k$ 의 값은?

- \bigcirc 2
- 2 6
- 3 10
- **4** 14
- 5 18

[3점]

풀이 : 등비수열 $\{a_n\}$ 의 공비를 r이라고 하자.

 $\lim a_n$ 이 수렴하지 않으므로 r>1 또는 $r\leq -1$ 이다.

 $\frac{(a_n)^2}{(a_{n-1})^2} = r^2$ 이므로 수열 $\{(a_n)^2\}$ 은 공비가 r^2 인 등비수열이다.

 $\lim_{n \to \infty} (a_n)^2$ 가 수렴하므로 $r^2 \le 1$, 즉, $-1 \le r \le 1$ 이다.

r>1 또는 $r\leq -1$ 이며, $-1\leq r\leq 1$ 이여야 하므로 r=-1이

다. 따라서 $\sum_{k=1}^{5} a_k = 2$

 \therefore ①

[EBS 수능완성 변형문제 - 96p 26번]

9.
$$\lim_{n\to\infty} \left(\frac{1}{n^3+1} + \frac{4}{n^3+8} + \frac{9}{n^3+27} + \dots + \frac{n^2}{2n^3}\right)$$
의 값은? [3점]

- ① $\frac{1}{3} \ln 2$ ② $\frac{1}{2} \ln 2$ ③ $\ln 2$ ④ $\frac{1}{3} \ln 3$ ⑤ $\frac{1}{2} \ln 3$

$$\begin{split} & \stackrel{\cong}{\Xi} \circ \rceil : \lim_{n \to \infty} \left(\frac{1}{n^3 + 1} + \frac{4}{n^3 + 8} + \frac{9}{n^3 + 27} + \dots + \frac{n^2}{2n^3} \right) \\ &= \lim_{n \to \infty} \sum_{k=1}^n \frac{k^2}{n^3 + k^3} \\ &= \lim_{n \to \infty} \sum_{k=1}^n \frac{\left(\frac{k}{n}\right)^2}{1 + \left(\frac{k}{n}\right)^3} \times \frac{1}{n} \\ &= \int_0^1 \frac{x^2}{1 + x^3} dx \\ &= \left[\frac{1}{3} \ln \left| 1 + x^3 \right| \right]_0^1 = \frac{1}{3} \ln 2 \end{split}$$

 \therefore ①

수능완성 가형 96p - 26번

26.
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{2}{n^2+4} + \frac{3}{n^2+9} + \dots + \frac{n}{2n^2} \right)$$
의 값은?

- ① $\frac{\ln 2}{8}$ ② $\frac{\ln 2}{4}$ ③ $\frac{\ln 2}{2}$ ④ $\ln 2$ ⑤ $2\ln 2$

답:③

① 55

10. 자연수 x의 소인수의 개수를 f(x)라고 하자. 수열 $\{a_n\}$ 이 임의의 자연수 n에 대하여 다음 조건을 만족한다.

$$a_{n+1} = \begin{cases} a_n + n & (f(a_n) \neq 1) \\ a_n + n^2 & (f(a_n) = 1) \end{cases}$$

 $a_1 = 8$ 일 때, a_7 의 값은?

2 58

4 64

⑤ 67

[3점]

풀이 : $a_1 = 8 = 2^3$ 이므로 $f(a_1) = 1$ 이고, $a_2 = 8 + 1^2 = 9$ 이다. $a_2 = 9 = 3^2$ 이므로 $f(a_2) = 1$ 이고, $a_3 = 9 + 2^2 = 13$ 이다. $a_3 = 13$ 이므로 $f(a_3) = 1$ 이고, $a_4 = 13 + 3^2 = 22$ 이다.

3 61

 $a_4 = 22 = 2 \times 11$ 이므로 $f(a_4) = 2$ 이고, $a_5 = 22 + 4 = 26$ 이다. $a_5 = 26 = 2 \times 13$ 이므로 $f(a_5) = 2$ 이고, $a_6 = 26 + 5 = 31$ 이다.

 $a_6 = 31$ 이므로 $f(a_1) = 1$ 이고, $a_7 = 31 + 36 = 67$ 이다.

[EBS 수능완성 변형문제 - 123p 20번]

11. 한 주사위를 4번 던져 나온 수를 순서대로 a,b,c,d라고 하자. 이 때, a-b=0, (b-c)(c-d)(d-a)=0일 확률은?

[3점]

① $\frac{1}{18}$ ② $\frac{2}{27}$ ③ $\frac{5}{54}$ ④ $\frac{1}{9}$ ⑤ $\frac{7}{54}$

풀이 : a-b=0인 사건을 A, (b-c)(c-d)(d-a)=0인 사건을 B라고 하자. 그러면 $P(A \cap B)$ 를 구하면 된다.

 $P(A \cap B) = P(A) - P(A \cap B^{C})$ 이다.

a-b=0일 확률은 a,c,d가 어떤 수든 상관없이 b에 의해서 결 정되고, b가 6개의 수 중 a가 되어야 하므로 $P(A) = \frac{1}{6}$ 이다. (b-c)(c-d)(d-a)=0'은 b=c또는 c=d또는 d=a이다'와 동치이므로 B^C 인 사건은 ' $b \neq c$, $c \neq d$, $d \neq a$ 이다'이다. 따라서 $A \cap B^{C}$ 인 사건은 $b \neq c$, $c \neq d$, $d \neq b$ 이고, 즉, 세 수 가 모두 달라야 하므로 $\frac{1}{6} \times \frac{5}{6} \times \frac{4}{6} = \frac{20}{216}$ 이다.

 $\therefore P(A \cap B) = P(A) - P(A \cap B^{C}) = \frac{1}{6} - \frac{20}{216} = \frac{16}{216} = \frac{2}{27}$ \therefore 2

수능완성 가형 123p - 20번

20. 상자 속에 숫자 1, 2, 3, 4, 5가 하나씩 적혀 있는 공 5 개가 들어있다. 이 상자에서 공 1개를 임의로 꺼내 적혀 있 는 수를 확인한 후 꺼낸 공을 다시 상자에 넣는다. 이와 같 은 방법으로 이 상자에서 4개의 공을 차례로 꺼내 확인한 수를 각각 a,b,c,d라 하자.

(a-b)(b-c)(c-d)(d-a)=0

이 될 확률은?

① $\frac{14}{25}$ ② $\frac{71}{125}$ ③ $\frac{72}{125}$ ④ $\frac{73}{125}$ ⑤ $\frac{74}{125}$

답: ④

12. 실수 전체에서 정의되는 함수 f(x)가 $0 \le k \le 2\pi$ 에 대해

$$f(x) = \begin{cases} \sin x & (x \le k) \\ (\cos k)(x - k) + \sin k & (x > k) \end{cases}$$

이다. f(x)의 최댓값과 최솟값이 존재할 때, $\int_{0}^{2\pi} f(x)dx$ 의 최 댓값은? [3점]

① $\frac{\pi}{2} + 1$

② $\pi + 1$

 $3 \frac{3\pi}{2} + 1$

 $(4) \frac{\pi}{2} + 2$

⑤ $\pi + 2$

풀이 : $(\cos k)(x-k)+\sin k$ 의 식을 보면 $\sin x$ 의 x=k에서의 접선 식임을 관찰할 수 있다.

따라서 f(x)의 최댓값과 최솟값이 존재하려면 $k=\frac{\pi}{2}$ 또는

 $k=\frac{3\pi}{2}$ 여야 한다. 그리고 그래프를 통해 $\int_{0}^{2\pi}f(x)dx$ 는

 $k = \frac{\pi}{2}$ 일 때 최댓값을 가짐을 알 수 있다.

 $\therefore \int_{0}^{2\pi} f(x)dx = \int_{0}^{\frac{\pi}{2}} \sin x \, dx + \int_{\frac{\pi}{2}}^{2\pi} dx = \frac{3\pi}{2} + 1$

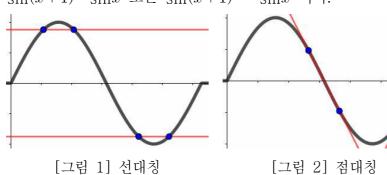
 $\therefore 3$

13. $0 \le x \le 2\pi$ 에서 $\sin^2(x+1) - \sin^2 x = 0$ 의 모든 근의 합은?

①
$$3\pi - \frac{3}{2}$$
 ② $3\pi - 2$ ③ $4\pi - \frac{3}{2}$ ④ $4\pi - 2$ ⑤ $5\pi - 2$

풀이 :

 $\sin^2(x+1) - \sin^2 x = (\sin(x+1) - \sin x)(\sin(x+1) + \sin x) = 0$ $\sin(x+1) = \sin x$ 또는 $\sin(x+1) = -\sin x$ 이다.



 $\sin(x+1)=\sin x$ 을 만족하려면 x와 x+1이 $\frac{\pi}{2}$ 또는 $\frac{3\pi}{2}$ 를 기

준으로 대칭이여야 하므로
$$\frac{x+(x+1)}{2} = \frac{\pi}{2}$$
또는

$$\frac{x+(x+1)}{2} = \frac{3\pi}{2}$$
, 따라서 $x = \frac{\pi}{2} - \frac{1}{2}$ 또는 $\frac{3\pi}{2} - \frac{1}{2}$

 $\sin(x+1)$ = $-\sin x$ 을 만족하려면 x와 x+1이 π 또는 2π 를 기준으로 대칭이여야 하므로 $\frac{x+(x+1)}{2}=\pi$ 또는

$$\frac{x+(x+1)}{2}$$
= 2π , 따라서 $x=\pi-\frac{1}{2}$ 또는 $2\pi-\frac{1}{2}$ 따라서 모든 근의 합은 $5\pi-2$ 이다.

∴(5)

※ 사인, 코사인 함수는 선대칭과 점대칭을 모두 갖고 있는 함수이기에, 사인, 코사인 함수의 대칭성에 대해 잘 이해하고 있어야 한다. 그래프를 그리면 x와 x+1이 $\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi$ 를 기준으로 대칭이여야 함을 시각적으로 쉽게 확인할 수 있다. (대칭성은 그래프가 최고!) 그리고 x와 x+1사이의 거리가 1이므로, x는 $\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi$ 로부터 1의 절반인 $\frac{1}{2}$ 만큼 왼쪽으로 떨어져있음을 알 수 있다.

14. 확률변수 X는 정규분포 $N(n,\sigma^2)$ 를 따른다. (단, n>0이다.)

 $P(X \le a): P(a < X < b): P(X \ge b) = 1:3:2$ 일 때, 다음 중 옳은 것을 모두 고른 것은? [4점]

$$\neg$$
. $a < n < b$ 이다.

$$L. a+2b>3n$$
이다.

$$\vdash$$
. $P(|X-n| \le b) = \frac{1}{3} \circ | \vdash$.

③ 7, ∟

풀이 :

 \neg . $P(X \le a) + P(a < X < b) + P(X \ge b) = 1$ 이므로

$$P(X \le a) = \frac{1}{6}, \ P(a < X < b) = \frac{3}{6}, \ P(X \ge b) = \frac{2}{6} \, \text{old}.$$

$$P(X \le n) = \frac{1}{2}$$
이고 $P(X \le b) = 1 - P(X \ge b) = \frac{2}{3}$ 이다.

$$P(X \le a) < P(X \le n) < P(X \le b)$$
이므로 $a < n < b$ 이다.

ㄴ.
$$P(X \le k) = \frac{2}{6}$$
일 때, $\frac{k+b}{2} = n$ 이므로 $k = 2n - b$ 이다.

$$P\left(X \le \frac{a+n}{2}\right) < \frac{2}{6}$$
이므로 $\frac{a+n}{2} < 2n-b$ 이고, $a+2b < 3n$ 이다.

$$\Box$$
. $P(|X-n| \le b) = P(n-b \le X \le n+b)$

$$b-n < b$$
이므로

$$P(n-b \le X \le n+b) > P(n-(b-n) \le X \le n+(b-n))$$

$$= P(2n-b \le X \le b)$$

$$= \frac{1}{3}$$

따라서 ㄱ이다.

 \therefore ①

※ 당연히 위와 같은 문제는 그래프로 풀어야 한다. 풀이는 식으로 써서 '갑자기 왜 이런 식이 나와?'라고 생각할 수 있지만, 그래프를 관찰하다보면 자연스럽게 나오는 생각이다.

** ㄴ에서 $a+2b>3n를 \frac{a+2b}{3}>n로 바꾸면, 왼쪽 식은 <math>a$ 와 b를 2:1로 내분하는 점이다. 이와 그래프를 이용하여 풀 수도 있다.

※ 그래프에 너무 의존하면 안된다는 것을 ㄷ선지가 보여준다. 선지를 대충보고 그래프에 대충 생각하면, 맞는 것처럼 보인다. 15. 다음은 임의의 자연수 n에 대하여

 $\sum_{k=1}^{m} \sqrt{k}(k+3) < \frac{4}{5}(m+1)^{\frac{5}{2}}$ 가 성립함을 수학적 귀납법으로 증명하는 과정이다.

$$i$$
) $m=1$ 일 때

(좌변)=4 , (우변)=
$$\frac{16}{5}\sqrt{2}$$
.

ii) m=2일 때

(좌변)=
$$4+5\sqrt{2} = 11$$
, (숙변)= $\frac{36}{5}\sqrt{3} = 12$

iii) m=3일 때

(좌변)=
$$4+5\sqrt{2}+6\sqrt{3} = 21$$
, (우변)= (가)

이므로 m=1,2,3일 때 성립한다.

iv) $m = n(단, n \ge 3)$ 일 때 주어진 식이 성립한다고 가정 하자.

$$\sum_{k=1}^{n+1} \sqrt{k} (k+3) = \sum_{k=1}^{n} \sqrt{k} (k+3) + \boxed{(\ \ \Box)}$$

$$<\frac{4}{5}(n+1)^{\frac{5}{2}}+$$
 [L]

$$=\frac{4}{5}\sqrt{n+1}\times$$
 \Box

$$<\frac{4}{5}\sqrt{n+1}(n+2)^2$$

$$<\frac{4}{5}\sqrt{n+2}(n+2)^2 = \frac{4}{5}(n+2)^{\frac{5}{2}}$$

따라서 수학적 귀납법에 의해

$$\sum_{k=1}^{m} \sqrt{k} (k+3) < \frac{4}{5} (m+1)^{\frac{5}{2}}$$

(7)에 들어갈 수를 p, (나), (다)에 들어갈 식을 각각 f(n), g(n)이라고 할 때, $\frac{p \times g(4)}{f(3)}$ 의 값은? [4점]

 \bigcirc 32

② 48

③ 64

4 80

(5) 96

풀이 : m=3일 때, $\frac{4}{5}(m+1)^{\frac{5}{2}} = \frac{4}{5} \times 4^{\frac{5}{2}} = \frac{128}{5}$

$$\therefore p = \frac{128}{5}$$

$$\sum_{k=1}^{n+1} \sqrt{k} (k+3) = \sum_{k=1}^{n} \sqrt{k} (k+3) + \sqrt{n+1} (n+4)$$
이므로

$$\therefore f(n) = \sqrt{n+1} (n+4)$$

$$\frac{4}{5}(n+1)^{\frac{5}{2}} + \sqrt{n+1}(n+4) = \sqrt{n+1}\left(\frac{4}{5}(n+1)^2 + n + 4\right)$$
$$= \frac{4}{5}\sqrt{n+1}\left(n^2 + \frac{13}{4}n + 6\right)$$

$$\therefore g(n) = n^2 + \frac{13}{4}n + 6$$

$$\frac{p \times g(4)}{f(3)} = \frac{128}{5} \times 35 \times \frac{1}{14} = 64$$

[EBS 수능완성 변형문제 - 93p 17번]

16. $\left|-\frac{\pi}{2}, \frac{\pi}{2}\right|$ 에서 정의된 함수 $f(x) = \sin x$ 의 역함수를 g(x)

라 하자.
$$\int_{0}^{1} e^{x} \cos^{2}g(x)dx$$
의 값은? [4점]

 \bigcirc 1

(3) e^2 (4) e^3

풀이 : $f(x) = \sin x$ 의 역함수가 g(x)이므로 $\sin(g(x)) = x$ 이다. 따라서 $\cos^2 g(x) = 1 - \sin^2 g(x) = 1 - x^2$ 이다.

$$\therefore \int_0^1 e^x \cos^2 g(x) dx = \int_0^1 e^x (1 - x^2) dx$$

$$= \left[e^x (-x^2 + 2x - 1) \right]_0^1$$

$$= 1$$

 \therefore (1)

수능완성 가형 93p - 17번

17. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 에서 정의된 함수 $f(x) = \tan x$ 의 역함수를

g(x)라 하자. $\int_{0}^{1} x \cos^{2} g(x) dx$ 의 값은?

① $\frac{1}{2} \ln 2$ ② $\ln 2$ ③ $\frac{3}{2} \ln 2$ ④ $2 \ln 2$ ⑤ $\frac{5}{2} \ln 2$

답:①

17. $X = \{1,2,3,4,5,6\}$ 이고 $X \to X$ 로의 함수 f에 대하여 치역 의 임의의 원소 k에 대하여 f(x)=k의 서로 다른 근이 n개 존재하도록 하는 함수 f의 개수를 a_n 이라고 하자.

이 때,
$$\sum_{k=1}^{6} a_k$$
의 값은? [4점]

① 2526

2 2626

3 2726

4 2826

⑤ 2926

풀이 :

치역의 개수를 m이라고 하자. 치역의 임의의 원소 k에 대하여 f(x)=k의 서로 다른 근이 n개 존재하므로 mn=6이다. m은 자연수이므로 n=4,5일 때는 모순이다.

$$\therefore a_4 = a_5 = 0$$

 $i)a_1$

치역의 임의의 원소 k에 대하여 f(x)=k의 서로 다른 근이 1개 존재하므로 치역의 개수는 6이다.

$$a_1 = 6! = 720$$

 $ii)a_2$

치역의 임의의 원소 k에 대하여 f(x)=k의 서로 다른 근이 2개 존재하므로 치역의 개수는 3이다.

$$a_2 = {}_6C_3 \times ({}_6C_2 \times {}_4C_2 \times {}_2C_2) = 1800$$

 $ii)a_3$

치역의 임의의 원소 k에 대하여 f(x)=k의 서로 다른 근이 3 개 존재하므로 치역의 개수는 2이다.

$$a_3 = {}_{6}C_2 \times ({}_{6}C_3 \times {}_{3}C_3) = 300$$

 $ii)a_6$

치역의 임의의 원소 k에 대하여 f(x)=k의 서로 다른 근이 6 개 존재하므로 치역의 개수는 1이다.

$$a_6 = {}_6C_1 = 6$$

$$\therefore \sum_{k=1}^{6} a_k = 2826$$

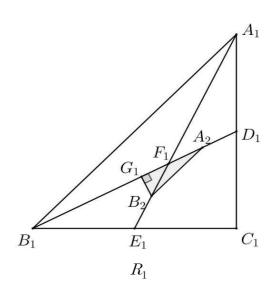
 $\therefore 4$

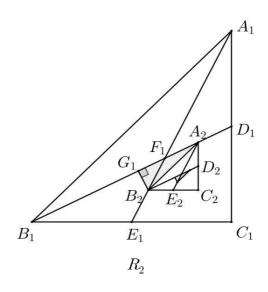
※ 문제 대충 읽지 말자. 공역과 치역을 구분안하고 풀었으면, 문제가 이상하게 보인다.

18. 그림과 같이 $\overline{A_1C_1} = \overline{B_1C_1} = 2$ 인 직각이등변삼각형 $A_1B_1C_1$ 가 있다. A_1C_1 의 중점을 D_1 , B_1C_1 의 중점을 E_1 이라 하고 A_1E_1 과 B_1D_1 의 교점을 F_1 이라고 하자. D_1F_1 의 중점을 A_2 , E_1F_1 의 중점을 B_2 라고 하자. B_2 에서 B_1D_1 에 내린 수선의 발 을 G_1 이라고 했을 때 삼각형 $A_2B_2G_1$ 을 색칠하여 얻은 도형을 R_1 이라고 하자.

 A_1C_1 과 평행하면서 A_2 를 지나는 직선과 B_1C_1 과 평행하면서 B_2 를 지나는 직선의 교점을 C_2 라고 하고, A_2C_2 의 중점을 D_2 , B_2C_2 의 중점을 E_2 이라 하고 A_2E_2 과 B_2D_2 의 교점을 E_2 이라고 하자. D_2F_2 의 중점을 A_3 , E_2F_2 의 중점을 B_3 라고 하자. B_3 에서 B_2D_2 에 내린 수선의 발을 G_2 이라고 했을 때 삼각형 $A_3B_3G_2$ 을 색칠하여 얻은 도형을 R_2 이라고 하자.

이와 같은 과정을 계속하여 n번째 얻은 그림 R_n 에 색칠되어 있 는 부분의 넓이를 S_n 이라 할 때, $\lim S_n$ 의 값은? [4점]





① $\frac{1}{50}$ ② $\frac{1}{25}$ ③ $\frac{3}{50}$ ④ $\frac{2}{25}$ ⑤ $\frac{1}{10}$

풀이 : E_1 에서 B_1D_1 에 내린 수선의 발을 H라고 하자.

$$\Delta B_1 C_1 D_1 \propto \Delta B_1 H E_1$$
이므로 $\overline{B_1 H} = 1 \times \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$ 이고,

$$\overline{HE_1} = 1 \times \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5} \circ |\mathcal{F}|.$$

 B_2 가 E_1F_1 의 중점이므로, G_1 은 HF_1 의 중점이다. A_2 는 F_1D_1 의

중점이므로,
$$\overline{A_2G_1} = \frac{1}{2}\overline{D_1H} = \frac{1}{2}\left(\overline{D_1B_1} - \overline{B_1H}\right) = \frac{3\sqrt{5}}{10}$$

$$\overline{G_1B_2} = \frac{1}{2}\overline{HE_1} = \frac{1}{2} \times \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{10}$$
 or.

$$\therefore S_1 = \frac{1}{2} \times \frac{3\sqrt{5}}{10} \times \frac{\sqrt{5}}{10} = \frac{3}{40}$$

$$\overline{A_2B_2} = rac{1}{2}\overline{D_1E_1} = rac{1}{4}\overline{A_1B_1}$$
이므로 중비는 $\left(rac{1}{4}
ight)^2 = rac{1}{16}$ 이다.

따라서
$$\frac{\frac{3}{40}}{1-\frac{1}{16}} = \frac{2}{25}$$
이다.

 $\therefore 4$

19. $X = \{1, 2, 3, 4, 5, 6\}$ 이다. 함수 $f: X \to X$ 가 임의의 $x \in X$ 에 대하여 $f_{60}(x) = x$ 일 때, f가 임의의 $x \in X$ 에 대하여 $f_{6}(x) = x$ 일 확률은?

(단,
$$f_{(n+1)}(x) = f_n(f(x))$$
이고 $f_1(x) = f(x)$ 이다.) [4점]

①
$$\frac{13}{40}$$
 ② $\frac{2}{5}$ ③ $\frac{19}{40}$ ④ $\frac{11}{20}$

풀이 : 만약 치역이 5개 이하일 경우, $f_{60}(x)=x$ 와 $f_{6}(x)=x$ 를 만족하지 못한다. (치역이 아닌 원소 중 하나를 α 라고 하면 $f_{60}(\alpha)\neq\alpha$ 이므로) 따라서 치역은 6개이고, 이는 일대일 대응을 의미한다. 어떤 일대일 함수든, 6번 안에는 자기 자신으로 돌아오기 때문에, 6이하의 수 1, 2, 3, 4, 5, 6의 최소공배수인 60번 안에는 반드시 자기 자신으로 돌아온다. 따라서 일대일 대응이면, $f_{60}(x)=x$ 이다. (어떤 수든 $f_{1}(\alpha)=\alpha$, $f_{2}(\alpha)=\alpha$,

 $f_3(\alpha)=lpha,\ f_4(\alpha)=lpha,\ f_5(\alpha)=lpha,\ f_6(\alpha)=lpha$ 중 하나를 만족시키 므로 어떤 수든 $f_{60}(\alpha)=lpha$ 이다.)

따라서 전체는 6! = 720

모든 수에 대하여 $f_1(x)=x$, $f_2(x)=x$, $f_3(x)=x$ 중 하나이면 $f_6(x)=x$ 이고, $f_1(x)=x$, $f_2(x)=x$, $f_3(x)=x$ 가 아니면서 $f_4(x)=x$ 혹은 $f_5(x)=x$ 이면 $f_6(x)=x$ 가 될 수가 없다. 따라서 전체에서 $f_1(x)=x$, $f_2(x)=x$, $f_3(x)=x$ 가 아니면서

따다가 전체에서 $f_1(x) = x$, $f_2(x) = x$, $f_3(x) = x$ 가 아니신지 $f_4(x) = x$ 혹은 $f_5(x) = x$ 일 확률을 빼주면 된다.

i) $f_1(x)=x$, $f_2(x)=x$, $f_3(x)=x$ 가 아니면서 $f_4(x)=x$ 일 경우의 수

 $_6C_4 \times (3 \times 2 \times 1 \times 1) \times 2 = 180$

ii) $f_1(x)=x$, $f_2(x)=x$, $f_3(x)=x$ 가 아니면서 $f_5(x)=x$ 일 경우의 수

 $_{6}C_{5} \times (4 \times 3 \times 2 \times 1 \times 1) \times 1 = 144$

$$1 \cdot 1 - \frac{180 + 144}{720} = \frac{396}{720} = \frac{11}{20}$$

 $\therefore 4$

※ 감이 안 올 때는 주어진 조건을 쉽게 바꿀 수 있는 방법을 찾아야 한다. 이는 당연히 몇 개의 함수를 만들어보며 관찰하는 것이다. 위의 풀이는 문제를 풀어보지 않고 보면 너무 뜬금없는 풀이지만, 관찰하다보면 쉽게 알 수 있는 것이고, 최대한 엄밀하게 쓰다 보니 복잡해 보이는 것이다. 관찰이 확신이 되었을 때, 증명을 하면 되고, 수능에서는 굳이 증명할 필요가 없다.

20. 상수 *a*,*b*에 대하여

$$f(x) = e^{-(x-a)^2 + b^2}$$
, $F(x) = \int_a^{x+b} f(t-b)dt$ 이다.

F(a)=a일 때, 다음 중 옳은 것을 모두 고른 것은? (단, b>0이다.) [4점]

ㄱ.
$$a>b$$

ㄴ. $0 \le x \le |a-b|$ 일 때, $f(x) \le 1$ 이다.
ㄷ. $\int_0^{a+b} f'(F(x)) dx \ge e^{b^2-a^2} - f(F(0))$

 \bigcirc

(2) L

③ ᄀ, ∟

④ ¬, ⊏

(5) 7 L E

풀이 : $f(x) = e^{-(x-a)^2+b^2} = e^{-(x-a-b)(x-a+b)}$

x = a + b, a - b일 때 f(x) = 1이고, 이를 이용해서 그래프를 그려서 시작하자. (직접 그려라)

$$\neg. \ F(x) = \int_{a}^{x+b} f(t-b)dt = \int_{a-b}^{x} f(t)dt$$

이고,
$$F(a) = \int_{a-b}^a f(t)dt = a$$
인데, $a-b < x \le a$ 일 때 $f(t) > 1$

이므로
$$a = \int_{a-b}^{a} f(t)dt > \int_{a-b}^{a} dt = b$$
 이다. 따라서 $a > b$ 이다.

(그래프로 쉽게 확인할 수 있다. $a=a\times 1$ 인 직사각형을 의미하므로 $\int_{a-b}^a f(t)dt$ 의 넓이와 같음을 이용하여 푸는 것이 일반적이다.)

ㄴ. f(a-b)=1이고 $0 \le x \le |a-b|$ 에서 $f'(x) \ge 0$ 이므로 $0 \le x \le |a-b|$ 에서 $f(x) \le 1$ 이다. (그래프에서도 쉽게 확인할 수 있다.)

$$\Box F(2a-x) = \int_{a-b}^{2a-x} f(t)dt
= \int_{a-b}^{x} f(t)dt + \int_{x}^{2a-x} f(t)dt
= \int_{a-b}^{x} f(t)dt + 2\int_{x}^{a} f(t)dt
= \int_{a-b}^{x} f(t)dt + 2\int_{x}^{a-b} f(t)dt + 2\int_{a-b}^{a} f(t)dt
= -F(x) + 2F(a)$$

f(x)가 x=a에 대해 선대칭이므로 f'(2a-x)=-f'(x)이다. f'(F(2a-x))=f'(-F(x)+2F(a))

$$=-f'(2a+F(x)-2F(a))$$
$$=-f'(F(x))$$

따라서 f'(F(x))는 (a,0)에 대해 점대칭이다.

$$\therefore \int_{a-b}^{a+b} f'(F(x)) dx = 0$$

 $0 \le x \le |a-b|$ 에서 $f(x) \le 1$ 이고, $F(x) \le 0$ 이므로 f'(F(x)) > 0이다. 따라서 $f(x)f'(F(x)) \le f'(F(x))$ 이다.

$$\therefore \int_{0}^{a+b} f'(F(x)) dx = \int_{0}^{a-b} f'(F(x)) dx + \int_{a-b}^{a+b} f'(F(x)) dx
= \int_{0}^{a-b} f'(F(x)) dx
\ge \int_{0}^{a-b} f(x) f'(F(x)) dx
= [f(F(x))]_{0}^{a-b}
= f(F(a-b)) - f(F(0))
= f(0) - f(F(0))
= e^{b^{2} - a^{2}} - f(F(0))$$

따라서 ㄱ, ㄴ, ㄷ이다.

 $\therefore (5)$

※ 점대칭 함수의 합성함수를 묻는 문제이다. \Box 풀이에서 엄밀하게 증명을 했지만, 실제로 그럴 필요 없고 그래프면 충분하다. f(x)가 x=a에 선대칭함수이므로, F(x)는 (a,F(a))=(a,a) 점대칭함수이고, f'(x)는 (a,f'(a))=(a,0) 점대칭함수이다. 따라서 합성함수 f'(F(x))는 (a,f'(F(a)))=(a,0) 점대칭함수이다! 이렇게 바로 $\int_{a-b}^{a+b} f'(F(x)) dx = 0$ 를 알 수 있다.

※ ⊏보기는 ¬, ㄴ에 힌트가 있다. 안풀릴 때는 앞 선지들을 관 찰해보자. **21.** 자연수로 이루어진 수열 $\{a_n\}$ 에 대하여 다음 조건들이 성립한다.

- (가) $n \ge 9$ 일 때만 $\sum_{k=1}^{n} a_k = \frac{n(n+1)}{2}$ 이다.
- (나) 임의의 자연수 n에 대하여 $a_{a_n}=n$ 이다.
- (다) $a_{(a_n)^2} \neq n^2$ 을 만족시키는 n은 α, β, γ 이다.

이 때, $\alpha\beta\gamma+\sum_{k=1}^5 a_k$ 의 값을 구하시오. (단, α,β,γ 은 서로 다른 자연수이다.)

- ① 42
- 2 44
- 3 46
- 48

⑤ 50

풀이 : (가) 조건에서 $n \geq 9$ 일 때 $\sum_{k=1}^n a_k = \frac{n(n+1)}{2}$ 이므로

$$a_{n+1} = \sum_{k=1}^{n+1} a_k - \sum_{k=1}^{n} a_k = n+1$$

따라서 $n \ge 10$ 일 때, $a_n = n$ 이다.

(나) 조건에서

 $a_n = n$ 일 때, $a_{a_n} = a_n = n$ 이므로 모순이 없다.

 $a_n = m (n \neq m)$ 일 때, $a_{a_n} = a_m$ 이므로 $a_m = n$ 이다.

이는 일대일대응을 의미하는데, 따라서 $a_m=a_n$ 일 때, m=n이다.

 $n\geq 10$ 일 때, $a_n=n$ 이므로 $n\leq 9$ 일 때, $a_n\leq 9$ 이다.

만약 $a_1 = 1$ 이라면 n = 1일 때 $\sum_{k=1}^n a_k = \frac{n(n+1)}{2}$ 이므로 (가)

조건에 모순이고, $a_9=9$ 라면 n=8일 때 $\sum_{k=1}^n a_k = \frac{n(n+1)}{2}$ 이

므로 (가) 조건에 모순이다. 따라서 $a_1 \neq 1$, $a_9 \neq 9$ 이다.

(다) 조건에서

 $a_{(a_1)^2}=1^2$ 이라고 가정하자. $a_1=m\,(m
eq 1)$ 이면 $a_{m^2}=1$ 이고,

 $a_1 = m^2$ 이다. $m = m^2$ 이므로 m = 1이다. 따라서 모순이다.

 $\therefore \alpha = 1$

 $a_{(a_9)^2}=9^2=81$ 라고 가정하자. 그러면 $a_{81}=(a_9)^2$ 이므로

 $a_9 = 9$ 이고, 이는 모순이다.

 $\therefore \beta = 9$

 $i)\gamma = 2$ 일 때

n=3,4,5,6,7,8일 때는 $a_{(a_n)^2}=n^2$ 이다.

n=4,5,6,7,8일 때, $n^2\geq 10$ 이므로 $a_{\left(a_n\right)^2}=n^2=a_{n^2}$ 이고,

 $(a_n)^2 = n^2$ 이고, $a_n = n$ 이다.

 $a_3 = m$ 이라고 두면 $a_{m^2} = 9$ 인데, 이를 만족하려면 $m^2 < 9$ 이므

로 m=1또는 m=2이다.

m=1이면 (다)조건에서는 $a_1=9$ 인데, (나)조건에서는 $a_1=3$ 이 므로 모순이다.

m=2이면 $a_4=9$ 가 되므로 모순이다.

 $(ii)\gamma = 3$ 일 때

n=2,4,5,6,7,8일 때는 $a_{(a_n)^2}=n^2$ 이다.

n=4,5,6,7,8일 때, i)에서와 같이 $a_n=n$ 이다.

 $a_{(a_2)^2} = 2^2 = 4 = a_4$ 이므로 $(a_2)^2 = 4$, $a_2 = 2$ 이다.

 $a_3 \neq 3$ 이면 $a_n \neq n$ 을 만족시키는 자연수 n이 1, 3, 9로 3개 존재하므로 모순이다. $(a_n = m$ 일 때, $a_m = n$ 이여야 하므로 짝수개 존재해야함.) 따라서 $a_3 = 3$ 이고, $a_1 = 9$, $a_9 = 1$ 이다.

$$\therefore \alpha\beta\gamma + \sum_{k=1}^{5} a_k = 50$$

 $iii)\gamma = 4$ 일 때

n=2,3,5,6,7,8일 때는 $a_{(a_n)^2}=n^2$ 이다.

아까와 같은 논의로 $a_3=m$ 이라고 두면 $a_{m^2}=9$ 인데, 이를 만 족하려면 $m^2<9$ 이므로 m=1또는 m=2이다.

m=1이면 (다)조건에서는 $a_1=9$ 인데, (나)조건에서는 $a_1=3$ 이 므로 모순이다.

m=2이면 (다)조건에 의해 $a_4=9$ 이고, (나)조건에 의해 $a_2=3$ 인데, 그러면 $a_n\neq n$ 을 만족시키는 자연수 n이 1, 2, 3, 4, 9로 5개 존재하므로 모순이다.

 $iv)\gamma = 5, 6, 7, 8$ 중 하나일 때(그 중 5라고 하자)

n=2,3,4,6,7,8일 때는 $a_{(a_n)^2}=n^2$ 이다.

그러면 아까와 같은 논의로 $a_2=2$ 이고 $a_3=1$ 혹은 $a_3=2$ 인데 $a_2=2$ 이므로 $a_3=1$ 이다. (가)조건에 의해 n=3일 때

 $\sum_{k=1}^{n} a_k = \frac{n(n+1)}{2}$ 가 성립하므로 모순이다.

: ⑤

* $n \geq 9$ 때 $\sum_{k=1}^n a_k = \frac{n(n+1)}{2}$ 라는 조건은 $n \geq 9$ 일 때,

 $a_n = n$ 가 아니라, n = 10일 때부터 $a_n = n$ 라는 말이다.

** $n \geq 9$ 일 때만 $\sum_{k=1}^n a_k = \frac{n(n+1)}{2}$ 라고 해서 $n \geq 10$ 일 때만

 $a_n = n$ 이라는 소리는 아니다.

※ 수열은, 정의역을 자연수로 하는 함수일 뿐이다. 이를 잘 이 해하고 있다면, 이 수열이 일대일함수를 의미하는 것을 쉽게 찾을 수 있었을 것이다. $(a_{a_n}=n$ 은 f(f(x))=x와 같다는 것을 눈치 챘는지 점검해봐라. 오른쪽 형태로 보니 익숙할 것이다.) 그러면 수열에서도 일대일함수의 특징들을 사용해보면, 함숫값 (수열의 값)이 같으면 정의역도 같다. 따라서 $a_m=a_n$ 일 때, m=n이다. 이를 찾는 것이 이 문제의 핵심이다.

22. 상수 a,b에 대하여 $\lim_{x\to 3} \frac{\ln(x-a)}{x^2-9} = b$ 일 때, $\frac{a}{b}$ 의 값을 구하시오.

풀이; $\lim_{x\to 3} (x^2-9) = 0$ 이므로 $\lim_{x\to 3} \ln(x-a) = 0$ 이다. $\therefore a=2$ $b = \lim_{x\to 3} \frac{\ln(x-2)}{x^2-9} = \lim_{x\to 3} \frac{\ln(x-2)}{x-3} \times \frac{1}{x+3} = \frac{1}{6}$ $\therefore \frac{a}{b} = 12$

23.
$$\left(x^8 + 3x^6 + 3x + \frac{1}{x}\right)^5$$
의 x 의 계수를 구하시오. [3점]

풀이 : $\left(x^8+3x^6+3x+\frac{1}{x}\right)^5$ 의 x의 계수는 $\left(3x+\frac{1}{x}\right)^5$ 의 x의 계수와 같다.

$$\therefore {}_{5}C_{3} \times 3^{3} = 270$$

24. 등비수열 $\{a_n\}$ 에 대하여 $a_1=54$ 이고, $n\geq 4$ 일 때, $a_n\leq 6$ 이다. 공비의 최솟값을 m이라고 할 때, $\frac{1}{m^6}$ 의 값을 구하시오.

풀이 : 공비가 음수일 때, $a_4<0$ 이다. 따라서 $a_5=6$ 일 때, 공비가 최솟값이 된다. $a_5=6$ 이면, $m^4=\frac{6}{54}=\frac{1}{9}$ 이고, $\frac{1}{m^6}=27$ 이다.

※ 문제 대충 읽지 말자. 아마 답을 81이라고 썼다면, 공비가 최솟값인지 최댓값인지도 확인안하고, 공비가 음수일수도 있다는 점을 고려 안한 상태로 $a_4 = 6$ 으로 두고 푼 것이다.

25. 정규분포 $N(m, \sigma^2)$ 을 따르는 모집단에서 크기가 n인 표본을 임의추출하여 신뢰도 α %로 모평균을 추정할 때, 표본평균이 $\overline{x_1}$, 신뢰구간이 $2a \le m \le b$ 이다. 이후에 같은 모집단에서 크기가 4n인 표본을 임의추출하여 신뢰도 α %로 모평균을 추정할 때, 표본평균이 $\overline{x_2}$, 신뢰구간이 $b \le m \le 75-a$ 이다.

이 때,
$$\overline{x_1} + 2\overline{x_2} + 3b$$
의 값을 구하시오. [3점]

풀이 :
$$\overline{x_1} = \frac{2a+b}{2}$$
, $\overline{x_2} = \frac{b+75-a}{2}$

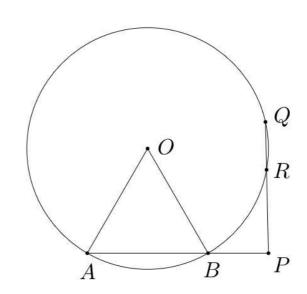
첫 번째와 두 번째에 1:4의 비율로 표본을 뽑았으므로, 신뢰구 간의 길이는 2:1이다.

$$b-2a = 2 \times (75 - a - b)$$

 $\therefore b = 50$

$$\therefore \overline{x_1} + 2\overline{x_2} + 3b = \frac{9}{2}b + 75 = 300$$

26. 반지름이 20인 원 C의 중심이 O이고 점 A와 B가 원 C 위에 있으며 삼각형 OAB는 정삼각형이다. 직선 AB위에 점 P가 있고 $\overline{BP}=10$ 이다. 원 위의 점 Q에 대하여 직선 PQ와 원 C의 교점을 R이라고 하자. 이 때, $\overline{PR}:\overline{RQ}=3:1$ 이다. 사각형 OAPQ의 넓이를 $a\sqrt{3}+b\sqrt{7}$ 이라고 할 때, a+b의 값을 구하시오. (단, 점 P는 원 밖에 있고, 점 Q는 점 $\overline{PQ}>\overline{PR}$ 이며, a와 b는 유리수이다.)



풀이 : $\overline{RQ}=k$ 라고 하면 $\overline{PB} imes\overline{PA}=\overline{PR} imes\overline{PQ}$ 이므로 30 imes10=3k imes4k이다. $\therefore k=5$

점 O에서 AP, QP에 내린 수선의 발을 H_1 , H_2 라고 하면,

$$\overline{OH_1} = 20 \times \frac{\sqrt{3}}{2} = 10\sqrt{3} \text{ old.} \quad \overline{OH_2} = \sqrt{20^2 - \left(\frac{5}{2}\right)^2} = \frac{15\sqrt{7}}{2}$$

이다. OAPQ의 넓이는 삼각형OAP와 OPQ의 넓이와 같으므로

$$\frac{1}{2} \times 10\sqrt{3} \times 30 + \frac{1}{2} \times \frac{15\sqrt{7}}{2} \times 20 = 150\sqrt{3} + 75\sqrt{7}$$
이다.

a = 150, b = 75

$$\therefore a + b = 225$$

[EBS 수능완성 변형문제 - 148p 12번]

27. $y = \log_a x$ 위에 있는 점 A, B가 각각 제 4사분면, 제 1사분면에 있다. 점 O, A, B를 지나는 원 C가 x축과 만나는 점 중 O가 아닌 점을 D라고 할 때, 다음 조건들이 성립한다.

(가) 원 C는 *y*축과 접한다.

(나)
$$\angle ADB = \frac{\pi}{2}$$

삼각형 OAB의 넓이가 $\frac{3\sqrt{2}}{4}$ 일 때, a^2 의 값을 구하시오. (단점 O는 원점이고, a>1이다.)

풀이 : (가) 조건에서 원 C가 원점을 지나는데 y축과 접하므로, 원 C는 y축과 원점에서 접한다. 따라서 원의 중심은 x축 위에 있다.

(나) 조건에서 $\angle ADB = \frac{\pi}{2}$ 이므로 AB는 원 C의 지름이다.

따라서 A의 y좌표와 B의 y좌표는 절댓값이 같고 부호가 반대이다. 원의 중심을 (k,0), 점 A의 좌표를 $k+\alpha$ 라고 하면,

 $\log_a(k+\alpha) = -\log_a(k-\alpha)$ 이므로 $\log(k^2-\alpha^2) = 0$ 이고,

 $k^2 = \alpha^2 + 1$ 이다. 따라서 피타고라스 정리에 의해 A의 y좌표는 1이다

 $\triangle OAB = \frac{1}{2} \times k \times 2$ 이므로 $k = \frac{3\sqrt{2}}{4}$ 이고, $\alpha = \frac{\sqrt{2}}{4}$ 이다.

 $\log_a(k+lpha)=1$ 이므로 $a=k+lpha=\sqrt{2}$

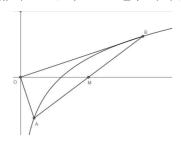
 $\therefore a^2 = 2$

수능완성 가형 148p - 12번

12. 그림과 같이 함수 $y = \log_3 x$ 의 그래프 위의 서로 다른 두 점 A, B가 다음 조건을 만족시킨다.

- (가) 선분 AB의 중점 M은 x축 위에 있다.
- (나) 두 직선 OA, OB는 서로 수직이다.

삼각형 OAB의 넓이는? (단, O는 원점이다.)



- $3\frac{11}{6}$
- **4** 2
- $\bigcirc \frac{13}{6}$

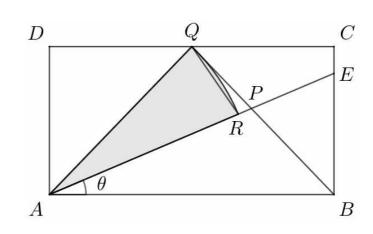
답: ②

[10월 더프리미엄 대성 모의고사 변형]

28. $\overline{AB}=2$ 이고, $\overline{BC}=\tan 2\theta$ 인 직사각형 ABCD가 있다. $\angle EAB=\theta$ 이고 점 P는 선분 AE를 $\tan 2\theta:\tan \theta$ 로 내분하는 점이다. 직선 BP와 DC의 교점을 Q라고 하고 선분 AE위의 점R에 대하여 $\overline{AQ}=\overline{AR}$ 이다.

부채꼴 AQR의 넓이를 $f(\theta)$, $\overline{RQ}=g(\theta)$, $\overline{QP}=h(\theta)$ 라고 할 때, $\lim_{\theta \to 0+} \frac{f(\theta)h(\theta)}{g(\theta)} = \frac{p}{q}$ 이다. p+q의 값은? (단, p와 q는 서로

소이고,
$$0 < \theta < \frac{\pi}{8}$$
이다.) [4점]



풀이 : AB와 평행하고 점 E를 지나는 직선과 QB의 교점을 F라고 하자. 그러면 \overline{EF} : \overline{AB} = \overline{EP} : \overline{AP} = $\tan\theta$: $\tan 2\theta$

$$\therefore \overline{EF} = \frac{2\tan\theta}{\tan 2\theta}$$

 \overline{EF} : $\overline{CQ} = \overline{BE}$: $\overline{BC} = 2 \tan \theta : \tan 2\theta$ 이므로 $\overline{CQ} = 1$ 이다. 따라서 $\overline{DQ} = 1$ 이고 $\overline{AD} = \tan 2\theta$ 이므로 $\angle DQA = 2\theta$ 이다.

$$\therefore \angle QAR = \theta$$

$$\overline{AQ} = \frac{1}{\cos 2\theta}$$
이므로

$$f(\theta) = \frac{1}{2} \times \left(\frac{1}{\cos 2\theta}\right)^2 \times \theta$$
 이코, $g(\theta) = \frac{1}{\cos 2\theta} \times \sin \frac{\theta}{2} \times 2$ 이다.

$$\overline{AQ}$$
: $\overline{AB} = \overline{QP}$: $\overline{BP} = \frac{1}{\cos 2\theta}$: 2이므로

$$h(\theta) = \overline{QP} = \frac{1}{\cos 2\theta} \times \frac{\frac{1}{\cos 2\theta}}{\frac{1}{\cos 2\theta} + 2} = \frac{1}{\cos 2\theta (1 + 2\cos 2\theta)}$$

$$\lim_{\theta \to 0^+} \frac{f(\theta)h(\theta)}{g(\theta)} = \lim_{\theta \to 0^+} \frac{1}{4} \times \frac{\theta}{\sin\frac{\theta}{2}} \times \frac{1}{\cos 2\theta(1 + 2\cos 2\theta)} = \frac{1}{6}$$

$$\therefore p + q = 7$$

29. 계수가 모두 정수인 3차함수 f(x)에 대하여 다음 조건을 만족한다.

임의의 0이상의 정수 n에 대하여 $f^{(n)}(0)+n \geq 0$ 이 성립한다.

f(k)=15이 되는 함수 f(x)의 경우의 수를 a_k 라고 할 때, $\sum_{k=1}^5 a_k$ 의 값을 구하시오.

(단,
$$f^{(0)}(x) = f(x)$$
이고, $f^{(n+1)}(x) = \frac{d}{dx} f^{(n)}(x)$ 이다.) [4점]

풀이 : $f(x)=ax^3+bx^2+cx+d$ 라고 하자. f(x)가 3차함수이므로 $a\neq 0$ 이다. 조건에 n=0,1,2,3을 차례대로 대입하고 정리하면 $d\geq 0$, $c\geq -1$, $b\geq -1$, $a\geq -\frac{1}{2}$ 이다. $a\neq 0$ 이므로 $a\geq 1$ 로 봐도 된다. c+1=c', b+1=b', a-1=a'이라고 하자.

 $i)a_1$

a+b+c+d=15이므로 a'+b'+c'+d=16이다.

$$\therefore {}_{4}H_{16} = 969$$

 $ii)a_2$

8a+4b+2c+d=15이므로 8a'+4b'+2c'+d=13이다. d는 홀수여야 하므로 d=2d'+1이라고 두면 4a'+2b'+c'+d'=6 이다.

c',d'이 짝수인 경우, c'=2c'', d'=2d''라 두면 b'+c''+d''=3-2a'이므로 $_3H_3+_3H_1=13$

c',d'이 홀수인 경우, c'=2c''+1, d'=2d''+1이라 두면 b'+c''+d''=2-2a'이므로 $_3H_2+_3H_0=7$

$$\therefore 13 + 7 = 20$$

 $ii)a_3$

27a+9b+3c+d=15이므로 27a'+9b'+3c'+d=0 이다. 따라서 1가지이다.

 a_4 부터는 a의 계수가 급격하게 커지므로 존재하지 않는다. 따라 서 $a_4, a_5 = 0$ 이다.

$$\therefore \sum_{k=1}^{5} a_k = 969 + 20 + 1 = 990$$

※ 3차함수라는 조건을 무시하지 말자. 조건은 어디에나 존재한 다. **30.** $f(x) = x^3 + ax^2 + bx + c$ $\exists a^2 \le 3b + 9$ $\exists a^2 \le 3b + 9$

 $0 \le t \le 2$ 에서 정의되는 연속함수 g(t), h(t)에 대하여 0 < t < 2에서 다음 조건들이 성립한다.

$$(7) f(t) = f(g(t)) = f(h(t))$$

$$(\downarrow)$$
 $q(t) < t < h(t)$

x = 5t - 4g(t), y = f(t)를 매개변수로 하는 (x,y)곡선과, x = 4h(t) - 3t, y = f(t)를 매개변수로 하는 (x,y)곡선과, $0 \le x \le 2$ 에서의 f(x)곡선으로 이루어진 도형의 넓이를 구하시오.

풀이 : f(x)가 $x=\alpha,\beta(\alpha<\beta)$ 에서 극값을 갖는다고 하자. (가) 조건과 (나) 조건을 동시에 만족하려면 f(x)=f(t)의 근이 3개가 존재해야 하고, 그 중 t가 2번째로 작은 근이므로 $\alpha\leq 0$, $\beta\geq 2$ 이고, $\beta-\alpha\geq 2$ 이다. $f'(x)=3x^2+2ax+b$ 이므로

$$\alpha+\beta=-\frac{2a}{3}$$
, $\alpha\beta=\frac{b}{3}$ 이고, $(\alpha-\beta)^2=\frac{4}{9}a^2-\frac{4}{3}b\leq 4$ 이다.

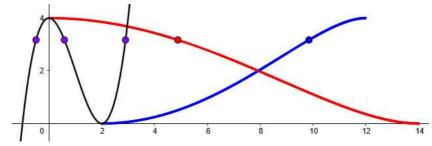
 $2 \le \beta - \alpha \le 2$ 이므로 $\beta - \alpha = 2$ 이고 $\alpha = 0, \beta = 2$ 이다.

$$\therefore f(x) = x^3 + 3x^2 + c$$

 $5t-4g(t) = \frac{5t-4g(t)}{5-4}$ 이므로 g(t)와 t를 5:4로 외분하는 점이

고,
$$4h(t)-3t=\frac{4h(t)-3t}{4-3}$$
이므로 t 와 $h(t)$ 를 $4:3$ 으로 외분하

는 점이다. 이를 통해서 2개의 매개변수 곡선을 그려보면 다음 과 같다. 이때, c가 어느 값이든 넓이는 상관없으므로 계산의 편의상 c=4로 두자.



교점을 찾아보면, 5t-4g(t)=4h(t)-3t, g(t)+h(t)=2t, 즉 t 가 g(t)와 h(t)의 중점일 때, t=1, f(t)=2일 때 교점이다. 구하려는 넓이를 y=2를 기준으로 잘라서 위의 넓이와 아래의 넓이를 따로 구해보자.

편의상 보라색 점을 x좌표가 작은 순서대로 A, B, C 빨간색 점을 D, 파란색 점을 E라고 하자.

그리고 y=2와 f(x)로 이루어진 도형 중 x=1 왼쪽에 있는 도형의 넓이를 S라고 하자.

i) y=2 위의 넓이

빨간색 매개곡선이 g(t)와 t의 5:4 외분점이므로 $\overline{BD}=4\overline{AB}$ 이다. 따라서 구하려는 넓이는 4S이다.

i) y=2 아래의 넓이

파란색 매개곡선이 t와 h(t)의 4:3 외분점이므로 $\overline{BE}=4\overline{BC}$ 이다. 따라서 구하려는 넓이는 4S이다.

S를 쉽게 구하기 위해서 f(x)를 평행이동해서

14

수학 영역(가형)

$$f(x) = x(x - \sqrt{3})(x + \sqrt{3}) = x^3 - 3x$$
이라 두면
$$S = \int_{-\sqrt{3}}^{0} (x^3 - 3x) dx = \left[\frac{1}{4}x^4 - \frac{3}{2}x^2\right]_{-\sqrt{3}}^{0} = \frac{9}{4}$$
이다.
$$\therefore 8S = 18$$