칼럼) 합성함수 그려버리기 with 기출 킬러 문항
합성함수 그려버리기 with 기출 킬러 문항.pdf
합성함수 그리는 법과 합성함수에 대한 전반적 이해를 제공하는 칼럼입니다.
그리는 법까지는 나형도 충분히 이해할 수 있게 해놨네요.
다만, 킬러 문항은 가형이긴 하지만, 그래프 모양만 특이할 뿐
전혀 가형의 계산을 하지 않기 때문에 읽는 데에 지장은 없으실 겁니다..!
댓글에 원하는 나형 킬러 문제가 있다면 제보 바라요..!
나형 합성함수 문제는 잘 기억이 안 나더라고요...
우리 이제 앞으로 합성함수쯤은 눈으로 그려서 풉시다 ㅎㅎ
추가로 해설 잘 보시면 그리는 법과 더불어 합성함수 킬러를 푸는 태도가 들어있으니
참고하시길 바랍니다 :)
원하는 합성함수 문제 제보 바랍니다 ~
그리고 pdf 파일은 해상도가 내려가서 오르비 게시물로나
게시물에 덧붙인 이미지 파일로 이용해주세요..!
0 XDK (+10,000)
-
10,000
-
고공의 꿈은 사탐런으로 날아가고... 설사과의 꿈은 cc로 날아가고...
-
ㅈㄱㄴ 국어 98 수학 96 영어 78 국사 5등급 물1 47 화1 50 어디가 나음?
-
제곧내입니다 지구 쌩노베인데 1년만에 수능 50 가능한가요? (원래 화학햇엇음)
-
교재패스를 살까 하다가 저걸 과연 다 들을수 있을까 싶어서요
-
생일 기념으로 덕코 좀 주세요 (덕코 줍줍) 대신 아가 시절의 저를 대신...
-
어디가실 거임?
-
ㄹㅇㅋㅋ
-
사실은 매번 수능마다 표점은 다 다르겠지만 일반적으로 물1,화1은 표점이 낮고...
-
특정 키워드 검색했는데 그 키워드 들어간 뻘글을 수십개 쓴 사람때문에 너무 거슬림...
-
수학 교사한명이 수1 수2 미적 확통 기하 다가르치나요 아니면 선택과목마다 담당교사가있나요??
-
더치페이가 거지근성이라 하는데 그럼 얻어처먹기만 하는 마인드를 가진건 대체 뭐임?...
-
좋은아침 11
아침이되니한결 마음이편해요
-
타코야끼 먹을거임
-
뇨 체를 만나고 달라졌음뇨 이제 나도 부드러운 사람임뇨
-
안냥 3
반가웡
-
미적틀 96은 0
백분위 100 가능성 아예 없는 건가.. 9평 100도 백 99 주고.. 이게 뭐야 ㅠㅠ
-
그리고 수학 1등급 이상 정도 되면 걍 수능 버리고 연논만 올인하는게 나을거같음...
-
흠
-
과외하고싶어요 0
피차 같은 미성년자한테 과외를 믿고 맡길 학부모가 존재할지... 뭐야 나도 고수익 알바시켜줘요
-
그분 근황 궁금한데 닉네임이 생각안남.. 강x 리뷰글 쓰시던 분이였는데
-
공대=>취업 테크후 40대에 수능판 복귀해서 역대급 저출산 물로켓 현역들 제압하고...
-
이 성적으로 경북대 부산대 문과 하위과 가능하나요??
-
부모님 감사합니다 열심히공부해서 대학갈게요
-
과탐 가산점 0
과탐 택1만 해도 가산점 적용되는 학교 있나요???
-
벌레다처먹을 10
버드기상
-
확통사탐인데 아무래도 수학을 진득하게 파는게 낫겠죠? 실전개념 -> 기출 -> N제...
-
수능 빌런 신고 7
존대 쓰니 잘 안 읽히는 것 같아 명사형어미로 썼습니다ㅠ 이번 수능 영어 때 뒷자리...
-
얼버기 6
오늘도 9시 기상 성공
-
6시간 자도 컨디션따라 정신 훼까닥 하는 편이라 대가리 컨디션 잘 생각해서 공부할거...
-
소름 끼치는 점 2
물리 난이도 23 < 24 < 25 1컷 23 = 24 = 25 (23은 표점...
-
ㅎㅇㅎㅇ 3
배경사진 바꿈 ㅎㅎ
-
공사 0
반갑습니다 현재 외고 다니는데 갑자기 공군사관학교가 너무 가고 싶습니다 현재...
-
게임 과금할까 했는데 막상 하려니까 돈 아깝다
-
이게 학종 정시보다 더 어려워보임 우리학교 04선배중에 인서울 의대논술6관왕 한...
-
해보고 싶은데
-
넹
-
다보인다
-
외대 ELLT 가능해보이나요?
-
기상 4일차 4
ㅓㅡ 너무피곤해
-
아메추 좀
-
수능 과탐으로 평가 육군: 물1화1 공군: 생1지1 카투사: 사탐 해병대는 과탐2
-
호우 0
환전 지연 없이 안전한 사이트입니다 각종 이벤트도 진행중이니 가입하시고 즐겨보세요...
-
1. 정말 초6이 맞는가? 나도 내 동생 졸업장으로 8살 어려질수도 있고 엄마...
-
호우 0
환전 지연 없이 안전한 놀이터입니다 . 각종 이벤트도 진행중이니 가입하시고 즐겨보세요
-
왜자꾸 틀이라고 그럽니까. 현역07이나 01이나 04나 거기서거기구만. 이유는...
-
떨려
-
https://youtube.com/shorts/GnbKzsQK7ag?si=Nmie4...
-
전형태 문학 올인원 vs 김상훈 문학론 둘중 고민하고있는데 김상훈 문학론은 작년에...
-
ㅛ 바로 옆에 ㅕ가 있어서 해요체 쓸때 자꾸 '~아닌가여?' ㅇㅈㄹ로 애교 부리듯이 자주 써짐...
역시나 스크랩
유익추
21학년도 가형 30번 sin 파이x 요!
그것 '따위'는 이거 읽으시면 그냥 눈으로 풀 수 있습니다 ㅎㅎ 추후에 손글씨 올릴게요! 제보해주셔서 감사합니다 따로 모아놓은 파일이 없어서 일일이 찾기가 힘들었네요 ㅜㅜ
이거보고 수학 1등급 쟁취해본다
'만점'되도록 계속 수학 비법 풀겠습니다 크크
슈냥 님 능지가 부족하다면 누가 만점을....
pdf 해상도 괜찮아보여요
확대하면 조금 떨어져서요 ㅜㅜ 보기 괜찮다면 다행이네요
아...그림 해상도가 좀 떨어지네요
좋은 칼럼 항상 감사합니다
한글에서 pdf로 저장하면 그러더라고요.. 누가 안 떨어지는 법 좀 알려주시면 너무 감사드리겠습니다 엉엉
한글에서 글만 쓰고 pdf변환 후 따로 굿노트에서 그래프 그리고 내보내면 안 깨질거에요
23드릴 님은 원래 그릴 줄 아셨을테니 킬러 문항 해설에 숨어진 '조건 해석법'을 보시면 될 거에요..! (나) 조건 해석 후 (가) 그리고 (다)를 해야 하는 이유를 찾아주세요 ><
혹시 속도 그래프로 합성함수 설명한 부분도 이해가 됐나요??
고마워요 ㅎㅎ
담 닉은 눈풀합성??
캬
"Always"
나형 분들은 없나요 ㅠㅠ
ㅎㅎ 손글씨 올릴게여~
N축의 문과화 느낌이네요 ㅋㅋ
위치 그래프를 온전히 이해하고 합성함수에 적용한다면, 속함수는 증감이 중요한거죠 ㅎㅎ 기울기는 ‘속도’를 말하니 ‘너비’를 말하는 건데, 그건 그림 바보같이 그려도 x좌표만 잘 적어주면 되니까요..!
만덕만덕
ㄹㅇ루요..!
오늘 공부 끝나고와서 자려고했는데 못참고 읽었습니다...
어렵진 않았나요..? 쉽게 써보려고 했는데 제 필력이 부족함을 느꼈네요 ㅜㅜ
죄송하지만 왜 둥글게 이어지는지 잘 이해가안됩니다 제가 독해력이좀 딸려서..
Case 2에 의해 속함수를 미분한게 0이 되기 때문인겁니다. h(x)=f(g(x)) 라 할때, g’(x)=0 인 곳이 우리가 구간을 나누는 경계죠. 그 경계에서 g’(c)=0 이라는 말은 h’(x)=f’(g(x))곱하기g’(x) 이므로 h’(x)=0이 성립하므로 합성함수 h가 둥글게 연결됩니다..!
아 이제 이해됬어요 감사함니다
저기 오타로 c있는 것만 x로 고쳐 읽어주세요..! 이해되셨다면 다행이네요 ㅎㅎ
저한테는 이게 폰헙이고 엑스비디오입니다
내일 수1 끝내고 빨리 수2 들어가고 싶어요
이번 수1 수특은 좀 버겁네요 ㅎㅎ;
올해 거 안 풀어봐서 모르는데 올해 어렵나 보군요 ㅜㅜ 힘내세요
오랜만에 봐서 더 그런 거 같아요 ㅋㅋㅋ 어렵다기 보단 아이디어 생각하는 거 다시 연습해야겠다..? 라고 생각하는 게 더 맞는 거 같네요 ㅎㅎㅎㅎ
워터마크도 생겼네요 ㄷㄷ
당신이 최고야
질문 드릴게 있는데 쪽지 드려도 될까용??
남겨주세요!
풀땐 안그려도 이해도가 깊어진다는게 ㄹㅇ 맞는말같네요
합성함수가 뭔지 알려면 무지성 식 계산보다 정의역 완벽히 이해해서 그리는 게 최고죠 ㅎㅎ 생가보다 조회수 안 나와서 속상해하는 중인데 얼른 많이들 봐주시길!! 공들인 칼럼이라서 미련 남네요 ㅋㅋ
2019학년도 수능 가형 30번도 이걸로 크흠..ㅎㅋㅎㅋ
확인 확인..!
그 미적분 삼도극 책 출간은 언제 될까요??
3월 중 목표이고 지금 내지 디자인 중입니다..! 원고 작성은 끝난 지 좀 됐어요
분명 수능전에는 쉽게 그렸던거 같은데 이제 기억 하나도 안나 응애...
저도 쓰다가 으음? 싶었어요 ㅋㅋ
뭔지 모르겠는데 문제들 개어려워보여요
이해 바로 되네요 ㄸ 감사합니다!
잘 쓰시길 바라요..! :)
약간 n축 맛 인것 같기도 하고 좋네요 ㅠㅠ
우와!! 다행이에요 ㅎㅎ 쉽게 쓰려하는데 역시 힘드네요 고생하셨습니다 :)
수학은 목소리가 너무 필요한 거 같아요!!! 글로만 하려니 머리 터질 뻔요. 좋게 봐주셔서 감사합니다 ㅎㅎ
칼럼 보구 같은부분 인강 다시듣고 기출문제 좀 풀고 다시 한번 보면 먼가 깨달음 오는게 많은거같습니당... 항상 잘보구있어용 감사합니닷~~ 나중에 '수열'파트 칼럼 쓰실 생각 있으신가용?!
그렇게 써달라고 해주시는 파트들 쓰고 있어요..! 참고하겠습니다 :)
질문이여!! 0플러스라길래 정의역을 어떻게 설정하는거지? 싶엇는데 무한대로 쭉 가네요… 이유가 뭔가요?
속함수가 x가 무한대로 갈 때 함숫값이 0 우극한이니까 0+라고 표시하신거 같네요
잘 읽었어요 답례로 뽀뽀 쪽
묵혀놓다가 오늘 정독했는데 ㄷㄷ.... 체계화해주셔서 감사합니다 체화완.ㅎㅎㅎㅎㅎ
이런 그래프는 칼럼 방법으로 어떻게 그려야하나요?
f의 치역을 따면 무한->0-> 무한이므로 그 치역에 맞춰서 3x+cosx를 그려주시면 되는 것이죠...! 그림 형태는 쉽게 나와요