[Team PPL 칼럼 71호] ‘경우의 수’ 단원을 얕보지 말자
우리는 중학교, 고등학교에서 적어도 두 번, 많으면 세 번까지 경우의 수를 세는 단원을 접하게 됩니다. 중학교 2학년과 고1의 수학 (하)에서 한번씩, 또 선택과목 확률과 통계에서까지 말이죠. 그런데 이때 배운 개념과 사고과정들은 실제로는 해당 단원이 아닌 곳에서도 빈번하게 쓰이고 있습니다. 합의 법칙과 곱의 법칙에 대한 내용을 정확히 이해하고, 다른 단원의 문제에 사용된 것을 통해 해당 개념의 중요성을 다시 일깨워 보는 시간을 갖도록 합시다.
# 왜 ‘더하기’인가요?
합의 법칙의 내용은 다음과 같습니다.
두 사건 A와 B가 동시에 일어나지 않을 때, 사건 A가 일어나는 경우의 수가 m, 사건 B가 일어나는 경우의 수가 n이면
(사건 A 또는 사건 B가 일어나는 경우의 수)=m+n
이다.
단순한 내용 속에서 우리가 이해해야 하는 본질은 다음과 같습니다:
두 가지 상황이 ‘동시에 일어나지 않으면’ 각각의 경우를 분리해서 구해야 한다.
보통 위의 내용을 이해하는데 어려움을 겪는 경우는 그렇게 많지 않습니다. 그런데, 문제에서 사용될 때는 이야기가 조금 달라집니다. 아래의 문제를 보시고, 이어서 설명드리겠습니다.
예시 1. 한 개의 주사위를 던질 때 나오는 눈의 수가 2 이하 또는 5 이상인 경우의 수를 구하시오.
쉽죠, 2 이하인 눈은 1, 2의 2개, 5 이상인 눈은 5, 6의 2개이므로 합쳐서 4입니다.
두 번째 예시는 어떨까요?
예시 2. 2023학년도 6월 모의평가 (공통) 12번
해당 문제는
조건 (가)에서 와 의 부호가 반대이므로 , 이어야 하는 조건을 이끌어낸 뒤,
조건 (나)에서 의 부호가 어떤지에 따라 경우를 나누어 구하는 문제입니다.
상황에 따라 계산할 식이 달라지기 때문에, 경우를 나누어 따로 구해야 할 필요성을 인지하지 않으면 문제를 제대로 풀 수 없습니다. 위의 예시 1과 같은 문제를 풀어오면서, 예시 2와 같은 문제를 풀 때 상황을 나눠서 푸는 것에 익숙해져 있다면 절댓값 같은 상황에 더 유연히 대처할 수 있지 않을까요.
# 동시에 안일어났는데요? ‘곱의 법칙’
곱의 법칙의 내용은 다음과 같습니다.
사건 A가 일어나는 경우의 수가 m, 그 각각에 대하여 사건 B가 일어나는 경우의 수가 n이면
(두 사건 A와 B가 동시에 일어나는 경우의 수)=m n
이다.
여기서는 ‘동시에 일어난다’ 라는 표현에 주목할 필요가 있겠습니다.
보통 일반적으로 이야기하는 동시라는 표현은 같은 시점에 발생하는 두 가지 일을 이야기 하지만, 여기에서 동시라는 표현은 이렇게 이해해야 합니다.
두 사건 A, B가 ‘같은 시간선상’에서 발생한다.
즉, 주사위 두 개를 동시에 던지던, 1시간의 간격을 두고 던지던, 같은 시간선상에서 두 주사위가 동시에 던져진 결과물이기 때문에, 동일한 상황으로 취급합니다.
따라서 이렇게도 해석 가능합니다.
어떤 시행의 서로 다른 m가지 결과 각각에 대하여 사건 B가 일어나는 경우의 수가 n이면,
총 경우의 수는 n을 m번 더한 것, 즉 n m이다.
우리가 곱하기를 처음 배울 때 출발한 개념과 비슷하게 이해할 수 있겠습니다. 위와 같이 이해하면, 한가지의 케이스 분리를 한 뒤 그 안에서 일어나는 또다른 케이스 분리에 대해서도 보다 쉽게 접근할 수 있을 거라 생각합니다.
뭐 가끔 이런 문제처럼 출제진까지도 생각 못한 케이스 분리가 존재할 때도 있긴 하지만요...ㅎ
예시 3. 2019년 6월 고2 모의고사 (가형) 30번
# 경우의 수를 대하는 자세는 문제풀이의 필수요건이다.
제일 단순한 실생활의 예시를 통해 수학문제를 풀 때 필요한 논리적 사고력을 키울 수 있는 단원은 분명 이 단원입니다. 실제로 출제되는 문제들 또한 미지수와 복잡한 수식들보다 일상생활에서 친숙히 볼수 있는 소재들로 구성된 문제의 비율이 가장 높기도 하고요. 해당 단원의 학습을 소홀히 하지 않고 어렸을 때 퍼즐을 풀던 감성처럼 오랫동안 고민하면서 공부하면 복잡한 문제에서도 당황하지 않고 상황을 분석할 수 있는 힘을 기를수 있을 것이라 생각합니다.
예비 고1 여러분들, 또 미적 선택을 고민중인 분들도 해당 단원만큼은 꼭 공들여 공부했음 좋겠다는 바람입니다!
칼럼 제작 | Team 수하기
제작 일자 | 2023.02.12
Team PPL Insatagram |@ppl_premium
*문의 : 오르비 혹은 인스타그램 DM
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
과탐 유지할사람들 12
베이스가 얼마나 됨?
-
정시결과 나온담에 하는게 정배일까요 돈이나 벌어야 되나
-
등급컷과 표준점수에는 상관관계가 있나요 컷이 올라가면 표잠은 올라간다든지 아니면 두...
-
흠
-
어과초 재밌음? 13
무슨 장르임?
-
문학 보기 문제에서 선지는 사실과 판단 부분으로 나뉘는데 평가원은 사실 부분을 잘...
-
특히 이감이 그런데 독서 3점중에 ㅈㄴ 복잡한 문제 하나씩 넣어놓잖음 무슨 생명과학...
-
오 2
-
구라인듯 현실직시 더 선명하고 뚜렷해지면서 화남 수능 이 씨발새끼
-
가능할리가있겠읍뇨...
-
내년에보자
-
언매는 사설 많이 보면 도움됨 뭐? 사소한 글자 하나하나로 변별한다고? 행사'별'...
-
(이륙 부탁드림) 2028 수시부터 기존 졸업자들도 내신 과목 신청 및 수강 가능하도록 국회에다 청원 같이 넣을 분 계심? 1
님들 알다시피 지금.... 2028 입시부터 ㅋㅋㅋㅋ 새 교육과정이 다...
-
현역들에게 폐관수련으로 수학 고정 100을 만들어 N수의 무서움을 보여주겠습니다.
-
1컷 47은 진짜 에바같은데 45진짜로안되나
-
Who's Sally
-
답 뭐해서 틀리심? 전 73했음
-
동시에 건강 걱정 듬
-
어? 그남들은 임신 고통도 모르면서 맨날 애만 낳으래 우리가 애낳는 기계인줄 아나...
-
사설 풀다보면 쓸데없이 사소한 포인트에 집착하게 됨
-
수능 얘기) 수능 준비할땐 금연하는게 좃뇨
-
작수 사문도 풀면서 음 적당하거나 좀 쉽네 했었는데 의문사 왕창하고 39점 3등급...
-
46은 너무 적고 45는 너무 많은 느낌 그래서 45점 백분위 95 아닐까 예상...
-
4수는 선택 18
3수까지 했고 이번에도 개같이 망해서 4수할까 생각중임 현역 때는 공부 안 해서...
-
국어 수학 2~3정도 영어 사문은 1~2정도(거의1) 화학에서 사탐런 하려고 하는데...
-
수능이 끝나고, 각 입시기관별 분석이 쏟아져 나오고 있습니다. 선택과목이 나뉘고,...
-
J는 검사인 Y를 꼬셔서 #~#
-
화1물1=동사세사 12
앞으로 과탐계의 쌍사는 화1물1이다 이상.
-
집밖은 위험하지만 그래도 노력해보기로 했음!
-
건동홍이 가능하구나 과목은 화작확통생윤사문이었음
-
휴 시간 옮겼다 5
점심시간 확보 완 옮겼더니 나타난 십자가??? 오...
-
쓰니들아 1
뭐해
-
기술:엔트로피 부호화 인문:가능세계 과학:개체성 주제통합:바나나 경제:오버슈팅...
-
내 이야기 아닌줄 알았는데 올해 사설 포함 모든 시험 중 수능을 제일 잘봄 이감...
-
ㅠㅠ
-
한 번 포텐 터지면 이만큼의 효자 과목이 없는데 그 포텐 터지는 시기가 수학처럼...
-
날이 너무 춥다
-
아로하 들을 때마다 감탄함 게이아님
-
그냥 주인공이 스쿠나 먹어서 개쌔진다음에 저주들 패는 애니같은데 이게 뭔재미지
-
전전 가려면 둘중에 어디로 가야함??
-
ㄹㅇ 4년만에 하니까 운동 다이어트>>>>>>게임임ㅋㅋ 운동과식단으로살을빼보자
-
올해 막판에 상상 국바 월례등등 엄없회차 폼 비정상적으로 좋길래 잔뜩기대하고...
-
난지금약자인데 2
노약자석에앉고싶다
-
날짜만나오고 시간이 안나와요
-
ㅈㄱㄴ
-
마이크로스트레티지 2배 롱 들어갔다가 뭔가 쎄해서 바로 나왔는데 자고...
-
일단 기하를 고르는 가장 큰 이유는 공부 조금하고 날로 먹기 위해서임 (뇌피셜)...
-
20,21살의 풋풋함은 사라지고 예뻐보이고 싶어서 대부분 성형이나 과한 화장으로...
-
그남들아 ㅋㅋ 동덕여대는 해방되지않는다 익이 ㅋㅋ 16
어그로 ㅈㅅ 이성적이면 동홍 낮은과 ㄱㄴ?
시러시러 경우의수 시러요 마니시러