[이동훈t] 기출로 기출 풀기 (241128) 미적분
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
기출로 기출 푸는 법에 대한
얘기를 해보려고 합니다.
이 글은
기출 분석을 어떻게 해야 하는가에 대한
구체적인 예시가 될 것입니다.
22 학년도 수능 미적분 30 번
24 학년도 수능 미적분 28 번
이 두 문제로 설명해보겠습니다.
본론 들어가기 전에
수학 기본 체력에 대한
아래의 글도 함 읽어보시고요.
[이동훈t] 수학은 피지컬이지. 딴거 있나.
이제 가보자고 ~
시험장에서
위의 문제를 읽고 나서 바로 ...
푸른 칸 : 함수 f(x)의 정의 (방정식, 그래프)
붉은 칸 : 점의 이동 (대칭/평행/확대축소) + 식의 변형(필충관계)
위의 두 가지가 떠오르지 않았다면
아래 문제에 대한 이론적 복습이
부족한 것입니다.
위의 문제에 대한 자세한 해석은
아래의 글을 참고하시구요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
22 학년도 미적분 30 번과
24 학년도 미적분 28 번은
큰 틀에서 문제의 구조가 같고,
소재로 보면 자매 입니다.
221130(미적분)은
점의 확대축소로
두 함수 f(x), g(x)를 결정하고,
(적분계산: 부분적분법(역함수의 정적분+기하적해석))
241128(미적분)은
점의 평행/대칭이동, 확대축소로
함수 f(x)의 방정식을 결정합니다.
(적분계산: 치환적분법)
2년 전에 확대축소만 출제되었으니,
평행/대칭이동의 관점까지 추가해서 출제한다.
그리고 부분적분법에서 치환적분법으로 바꾼다.
교육과정에서 보면 ...
평행이동 + 대칭이동 + 확대축소 = 점의 이동
부분적분법 + 치환적분법 = 초월함수의 적분법
이고 ...
이건 평가원 출제자들의
전형적인 출제 방식을 보여줍니다.
즉, 출제자들은 본인들이 만든 문제 A를 보면서
A 합 A^C = 전체
에서 A^C 에 해당하는 지점을 찾기 위해 노력 한다는 것입니다.
이렇게 하면
각 문항의 정답률을
원하는 대로 얻을 확률이 높아지지요.
나는 28 번 문제 생김만 보고서
' 아 이건 재작년 30 번에서 나온 문제네. '
라는 생각이 들었는데요...
안정적인 만점을 노리는 분들은
이 정도는 쉽게 보여야 합니다.
.
.
.
교육과정의 체계에서
이 문제를 분석해 볼까요 ?
f(9)/f(8) 의 값을 구하라고 하였으므로
함수 f(x) 의 방정식을 유도해야 합니다.
이때, 상수 k 의 값을 결정해야 하니,
구간 [0, 7] 에서의 정적분 값이 e^4-1 이다.
에서 k 의 값이 유도된다는 생각을 할 수 있어야 합니다.
중/고등 교육과정의 체계상
집합 -> 함수 -> 정적분
이므로, 이 문제의 주어진 조건에서
집합(정의역, 치역),
함수(의 방정식, 그래프, ...)
를 우선 살펴보아야 합니다.
함수(즉, 그래프)는 점들의 집합이므로
곡선 y=f(x) 가 지나는 점을 찍어야 한다.
곡선 y=f(x) 가 반드시 지나는 점을 찍으면
(g(t), t), (h(t), t)
인데. 붉은 칸에서
h(x) = k - 2g(x)
라고 하였으므로
(g(t), t), (k-2g(t), t)
입니다. 이때, 점의 이동의 관점에서
k-2g(t) 는 x 축 위의 g(t) 를
y축에 대하여 대칭이동시킨 후,
y축에 대하여 2배 하고,
x축의 방향으로 k만큼 평행이동시킨 것입니다.
이제 아래의 그림과 같이
함수 f(x)의 그래프를
그릴 수 있습니다.
(아래는 2025 이동훈 기출 미적분 풀이)
위의 풀이에서
정의역 : 실수 전체의 집합 = (-inf, 0) 합 [0, k) 합 [k, inf)
치역 : 음이 아닌 실수 전체의 집합
함수 : 두 구간 (-inf, 0], [k, inf) 에서 일대일 대응(방정식까지 유도됨)
구간 [0, k]에서 f(x)=0 (<-귀류법 이용)
정의역을 2개 이상의 집합으로 쪼개는 것,
각 구간에서 함수 f(x)의 방정식을 결정하고,
성립하는 성질을 생각하는 것,
귀류법을 적용하는 것,
막상 직접 출제 범위는 별 것 없는 쉬운 계산이라는 것,
... 등등이
이건 수능 문제야 !
라고 말하는 것 같습니다.
(이 문제의 경우에는
세 개의 구간으로 쪼개서 ...
두 개의 구간에서는 일대일함수,
나머지 한 구간에서는 상수함수임을 밝혀야 하지요.
이 과정에서 귀류법을 써야 하고요.)
.
.
.
잘 만들어진 수능 문제를 보면 ...
출제자들이 교육과정과
본인들이 만든 기출 문제를
얼마나 잘 이해하고 있는지를
알 수 있습니다.
.
.
.
이번주 중에
2024 수능 수학에 대한 심층분석글을
올려드릴 예정입니다.
또 만나요 ~~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
라면에 말아먹고 남은 밥 돼지고기 장조림(캔) 계란후라이 김치 계란은 2월...
-
프세카하셈
-
ㅈㅅㅎㄴㄷㅈㅅㅎㄴㄷ 용서해주세요
-
사문 질문좀요 1
임정환t 들을려고 했는데 윤성훈t 평이 좋아서 고민되네요...두분 처이점이라던가...
-
요번에 재수하는데 평균 수능5등급입니다 진짜미친듯이하면 어디까지올릴수있을까요
-
인증하지마라 4
고하지마라
-
23, 25학번 새내기 여러분, 경성대학교 약학대학 합격을 진심으로 축하드립니다!!...
-
4점짜리만 모아놓은 기출문제집 있나요? 자이는 쉬운문제도 포함되어있어서요.....
-
오늘부로 홍준용에 대한 지지를 철회한다. 오늘부터 지지관계에서 벗어나 홍준용과 나는...
-
ㅈㄱㄴ
-
조선시대마인드인가
-
예비 고3 생윤 리밋들으면서 현돌 기시감 풀려는데 괜찮을까요? 0
임정환t 리밋으로 개념강의 들으면서 현돌 기시감으로 기출문제집 풀려는데 괜찮나요?
-
거기서 진짜예쁜 볼펜을 찾았는데 인터넷 찾아보니까 별러 안예쁘네…담요단의길은 쉽지않다
-
롤 키려는데 6
갑자기 다 귀찮아짐 학교 커뮤나 봐야지
-
이명학 신떽스 6
1~2등급 정도면 안해도 될까요 기본을 탄탄하게 하고 싶어서 알고리즘은 할꺼긴 합니다
-
콜레스테롤 폭발함?
-
아제발
-
주제 고민중
-
남고다닌다고 써놨잖아
-
2.14
-
제발 한번만 봐주세요 16
올해 고 3인 학생입니다 등급은 국어 3-4등급, 수학 2-3등급, 영어 2등급...
-
뇨체 오잉 띠용 안쓰게 됨 ㅇㅅㅇ 안쓰게 됨 ~라는 거야 아이고..
-
쪽지해라
-
생지로 대학 간 케이스라 물리 화학은 노베인데 1학년 1학기 커리큘럼에서 일반화학이...
-
결정실패! 3
내일 오전중으로진짜함
-
근데 이 분은 8
신이 인간세상에 나온게 아닐까? 저 비주얼에 인설의 이게 맞는 밸런스냐
-
지금 먹는거 마그네슘밖에 없는데 뭐뭐 챙겨드시나여
-
롤 킬까 10
치피치피
-
뜬금없는 문자를 보내보지 난 진짜보내버리고싶다못잊은듯
-
이것저것해봐야될거같음 요리랑 과외부터 일단 해봐야지…
-
https://orbi.kr/00071919357/유두개발-해보신-분-댓글-남겨주세요! 으..
-
물체가 멀 때랑 물체가 가까울 때 시선 속도 다른거 맞죠? 6
물체가 동일 속력이라고 가정 했을 때요 잘 아시는 분 답 좀
-
제곧내
-
잘하는거 해라 승률 0판짜리 빅토르 꺼내지 말고
-
저보다 레벨높은사람 17
선착순 만덕
-
1번코스 햄버거세트&소주 한병 2번코스 이슬톡톡&아이스크림 3번코스...
-
ㅇㅇ
-
흐흐
-
10연승 후 7연패 아
-
그렇게 내 인생 5670945101310일의밤이 사라졌다 낮만을 살아간 사나이가...
-
난 몰루
-
전 마조, 이건 뭔 취향 대체
-
어떤걸 듣는것이 좋을까요?
-
이게 뭐에요 이게
-
우흥...
-
저 여르비임뇨 1
그렇대여
-
ㄱㄱ
선생님 쪽지 좀 봐주세요.
답장 보냈습니다. 감사합니다. :)
혹시 교재에서도 이러한 기출 간의 상관관계에 대해 언급해주시나요?
2025 이동훈 기출은 유형별 구성이며, 각 유형에 대한 실전 개념이 포함되어 있습니다.
위의 두 문제의 경우 ... 30번은 역함수의 미분법, 28번은 치환적분법에 해당하므로 같은 유형이 아닙니다. 다만 점에 대한 해석의 관점에서 같고 ... 이에 대해서는 실전 개념에서 설명하고 있습니다. (다만 위의 칼럼 처럼 직접적으로 두 문제를 대조비교하는 것은 아닙니다. 점의 해석을 어떻게 할 것인가에 대해서 실전 개념에서 다루는 것입니다. 이에 대한 문제는 워낙 많기 때문에 ... 위의 설명 처럼 두 문제만 딱 짚어서 대조 비교 하기 힘듭니다. 책이니까요.)
자세한 책 소개 글은 아래를 참고하세요. 감사합니다. ~ :)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
https://orbi.kr/00066537545