근의 분리 상위호환
과외준비를 하다가 이번 6모 15번과 작년 9모 13에가 어떤 관점이 동일하게 쓰인다는 것을 알았는데요,
특히 9모 13번을 이렇게 푸는 것은 처음 봤다고 하네요.
앞으로 근의분리는 쓰지 마세요. 오늘 알려드리는 이 방식이 근의 분리를 거의 완전히 대체할 수 있습니다
(글 맨 마지막에 조건 달아뒀습니다.)
사실 저는 그렇게 특이한 접근인지는 모르겠습니다. 수학(상)을 열심히 공부했다면 이게 가장 자연스러운 접근이죠. 아무튼 과외생을 보며 이걸 여러분께도 소개해드리면 나름 의미가 있겠다고 판단되어 글로 쓰게 되었습니다.
일단 이번 6모(2025학년도)입니다. 문제를 다 풀진 않을거고, 맨 마지막 부분만 볼게요. (나) 조건을 통해 k=2인 것까지 구한 상황입니다.
k=2니까 g(x)가 미분가능하려면 f(2)=2, f'(2)=2여야 합니다. 최고차항 계수가 1인것도 아니까, 문자 하나만 가지고 식을 세울 수 있습니다.
이렇게 말이죠.
(가) 조건에 의하면, 얘가 x가 2보다 큰 곳에서 항상 증가해야 합니다. 그럼 당연히 도함수 관찰을 해야겠죠.
아, 센스 있게 2만큼 왼쪽으로 평행이동해서 봐도 되는데(저도 풀 때 그렇게 했구요) 헷갈리는 독자도 있을 수 있기에 여기선 그대로 갈게요. 괜히 과정 추가하지 않겠습니다.
아무튼 미분해보겠습니다.
냅다 판별식 쓰면 안 된다는 것은 알고 계실겁니다.
함수가 x축과 두 번 만나지만 x가 2보다 클 때는 x축보다 위에 있을수도 있으니까요.
난 그냥 그렇게 해서 맞았는데? 하시는 분들은 운이 좋으신 겁니다. 이 문제에선 결국 그게 답이긴 하더라구요 ㅋㅋ
여기서 a 범위를 나눠서 푸는 분들도 있습니다.
그건 올바른 풀이지만, 완전히 상위호환인 다른 풀이가 있어요. 그걸 지금 알려드리겠습니다.
일단 부등식에서 모르는 문자가 있는 부분을 넘겨버립니다. 그 뒤에 기하적인 의미를 부여할겁니다.
왼쪽은 완벽하게 그릴 수 있는 이차함수고, 오른쪽은 (2,0)을 지나면서 a에 따라 기울기가 달라지는 직선이죠.
이때 “직선이 항상 이차함수보다 아래에 있어야 한다” 라고 해석해주시면 됩니다.
그럼 기울기가 점점 가파라지다가 딱 접하는 순간까지 가능하겠죠? 그때보다 기울기가 더 커지면 직선이 더 위에 있는 순간이 생깁니다.
반면 기울기가 음수라면 음의 무한대까지 계속 가능할 겁니다.
x가 2보다 큰 곳에서는 여전히 아래에 있기 때문이죠.
그럼 접하는 순간 계산해볼게요.
a는 플마 루트 6인데, 둘 중에서 우리가 원하는 순간은 -루트 6일겁니다. 그래야 빨간 직선의 기울기가 양수가 되기 때문이죠.
a의 범위는 -루트6보다 크다가 되겠네요.
2024년 9평 13번에도 이걸 적용해볼게요.
저도 이렇게 빨리 풀릴 줄 몰랐는데, 아주 빨리 풀 수 있습니다.
얘도 당연히 도함수를 관찰해야겠죠.
연두색 영역에 도함수가 그려져야 합니다. 파란색 함수처럼요.
반드시 (-1,0)을 지나야 하겠네요.
왼쪽 함수에 대입해봅니다.
b=2a-1이 나오겠네요.
도함수의 오른쪽부터 관찰해보겠습니다. 아까 했던 거 똑같이 할게요.
a범위 구했습니다.
왼쪽에서 새로 추가되는 조건은 없습니다. 이미 이 조건만으로도 왼쪽 구간 함수는
y절편이 양수고
(-1,0)을 지나므로
아까 말한 연두 구간에 그려집니다.
우리가 구해야 하는건 a+b의 최대최소 즉, 3a-1 의 최대최소값입니다. a 범위를 아니까 다 구한 셈이네요.
네 여기까지입니다.
부등식으로 인식한 뒤에 약간의 변형을 가해주어서 기하적으로 관찰하는 방법을 알려드렸습니다.
문자범위 나눠서 하는 것보다 훨씬 빠르고 실수 확률이 적은 풀이라 생각합니다.
한 마디 덧붙이자면, a로 묶인 부분이 기하적으로 깔끔하게 해석이 가능할 때 이 방식을 쓸 수 있습니다.
그럼 언제 깔끔한 해석이 불가할까요?
a의 계수가 이차도 있고.. 일차도 있고 이런 식으로 여러 개가 있다면 기하적 의미를 부여하기 힘들 겁니다.
즉 문자 계수가 하나로 한정된 상황에서는
이 방식이 근의 분리를 완전히 대체한다고 말할 수 있겠네요.
다음에 또 좋은 글로 찾아뵙겠습니다. 감사합니다.
0 XDK (+1,010)
-
1,000
-
10
-
내가 비흡연자라서 인연이 없겠구만
-
나름 ky성적대인데도 센츄는 어림도 없네 문과기준 수능센츄면 서울대는 걍 가겠다 ㄷㄷ
-
아...
-
나도 저격 좀 0
배율이 안맞아서 못하고 있음뇨
-
지구과학 1 3
지구1뜨려면 공부기간 얼마나 잡아야함? 내심때도 지구 안해본 쌩노베인데.. 걍...
-
오픈하기전 한 아침 8시쯤 한바퀴 ㅇㅇ 다른 위험요소가 없다면 (중간에 힘들면 잠깐...
-
그냥처음부터끝까지운주사위6떠서멀쩡하게본듯 운이참중요한거같다...
-
러프하게만보자 한과목 개망한것 빼고(조선대는 이론적으로 과탐 한과목 빵점이어도...
-
고전시가 질문 10
(나)의 첫번째에 생매가 왜 고고한 취향을 사실적으로 보여주는 소재가 아닌거에요?...
-
이걸구경못하네 하
-
월 40~60만원인데 대성 메가 인강 강의 하나보다 비싸노 ㄷㄷ 님들은 어떻게 생각함?
-
롱을 쳐 2
사람들이 믿으면 그게 가치인거야
-
하...개잘생겼어 눈호강하고간다
-
예비 고3입니다. 수학 들으려고 하는데 모고는 2,3 왔다갔다 해요.. 배경빈T랑...
-
감옥에 갈 예정인 L은 #~#
-
특히 18번 96 9 마킹이 너무 어색해요 집에와서 해보는데 하.. 성적표좀 빨리 나왔으면
-
세종대 가천대 5
메가스터디로 봤을때 세종대 it는 안정뜨고 가천대 반도체대학은 상향뜨는데 그럴 수...
-
흠.. 이미 25강기분끝내놨는데 복습하면 26거 들을때 생각날까봐 여러분들이라면 뭐...
-
나보다 못본애들이 마스터달고 꺼드럭대는데 솔직히 서러웠다 질문하니까 경희대 어문이...
-
실모 한두개 찍먹한거 제외하면 기출만으로 1 유지 가능한 케이스도 있다는걸...
-
위키드 0
베놈 보려다가 친구놈이 늦게와 상영시간놓쳐서 평점 높다길래 봤는데 패션왕 실사화...
-
메가 기준 국수영탐탐 123 121 3 67 66인데 추합 가능성 있어보이나요.....
-
국어는 7개년 기출분석 하는거, 영어는 마더텅 1회독 돌리는거 4월까지 끝내려고...
-
언매 개념강의 내년버전 올라오면 다시들어야함?
-
누가 더 나음?
-
수능 전까지만 해도 시간 겁나 빨리 간다고 느꼈는데 막상 수능 끝나고 보니까 시간이...
-
컴공하고 양자 전공 어느 학과가 낫나요? 양자전공 대학원은 가야하고 관련 인프라...
-
디카프 트레일러 파이널 다음으로 만족스러웠던건 백호 시즌4
-
실채점은 나와야 좀 들어오려나요 아니면 윗대학들은 이미 많이 찬 건가요?
-
성대도 다군은 노려볼만 한거 같은데.. 흠
-
언매 확통 생윤 사문이고 가채점기준 원점수 91 81 영어1 35 48 인데...
-
Ts 마렵네 4
ㅋㅋ
-
저 형 잘맞춤 후하게 잡아서 틀린적은 있어도 짜게 잡을때는 기가막히게 다맞던데
-
수미잡인 이유 4
이감 6-8 70점 6-9 65점 6-10 56점 김승모 1 80 2 74 3 58...
-
흠..
-
혜자 아님?
-
리스제임스 부상 5
씨빨련 닌 주장직 내려놔라
-
설레발 업보빔 맞을까봐 참음 ㅋㅋ 15만덬 지불하고 바꿈
-
아무일도 없었습니다.
-
6평 66점 수능88점 산 증인이 여기있읍니다
-
교대 사범대가 6
끌리네 유혹을 끊어내야지..연륜을 끊어내듯이
-
이건 그냥 쓰레기행
-
눈물만 나네요
-
모의고사 0
지금 현강 다닐때 받았는데 안푼 모의고사들 당근에 올리면 잘팔림?
-
그냥 단순궁금증
-
나를받아주는곳이 서강대밖에없구나
-
구매한컨텐츠를전부풀었기때문 흐흐
-
나한텐 물2가 훨 선녀다
개추 눌렀다....
캬
일단 읽어보고 걔추
앞으로도 좋은 글 써볼게요 ㅎㅎ
ㄷㄷㄷ
갑종님이랑 생각이 거의 일치하는...
왜냐면 둘이 친구거등
저도 작년 9평 13번을 이렇게 푸는게 맞다고 생각했어서 근의 분리니 뭐니 말 많을때 잘 이해가 안되긴 했었어요
김현우 선생님이랑 완전히 똑같이 푸셨네요.. 칼럼 잘보고 갑니다!
15번 이거풀때 산술기하로 풀었는데 최솟값이라 풀린거겠죠
6평 말하시는거죠?
산술기하도 괜찮네요. 왜냐면 여러가지 조건이 딱 맞아 떨어져서 여기에 산술기하를 쓸 수 있습니다.
일단 x가 2보다 큰 부분을 봐야 하는데, 그게 x-2>0이어야 하는 산술기하 조건이랑 맞아떨어졌구요,
부등식에서 오른쪽 부분이 상수이기 때문에 최솟값만 보면 됩니다.
물론 좀 더 근본적으로는, 산술기하는 완전제곱식에서 나온 공식이기에 똑같다고 볼 수도 있지만
아무튼 아주 맘에드는 관점이네요!!
넹 6모 15번 x-2>0보다 큰상태여서 이거로 산술기하썼는데
해설강의같은거 보니까 다들 다르게풀어가지고 결국 똑같은이야기였네요
대범준 그래프 분리
첫 문제에서 a=±루트6 구하셨을 때 D/4 공식을 쓰셔는데, 미지수를 (x-2)로 해서 b'²-ac 로 바로 구하신건가요?
아! 근데 그렇게 해도 되는건가요? 제가 고1수학을 날림으로 배워서..
넵, 이해를 도울 수 있는 두 가지 관점을 소개해드리겠습니다
1. 평행이동.
x축과 만나지 않는 이차함수를 좌우로 평행이동해도 여전히 x축과 만나지 않는다. 따라서 해당 이차함수를 2만큼 왼쪽으로 이동시킨다면 3x제곱 +2ax+2이고, 여기에 판별식을 쓰면 된다.
2. 치환
x-2를 t라는 새로운 문자로 잡는다.
사실 1과 본질적으로 같다.
감사합니다!! 저는 x가 변수인 상황에서 판별식을 쓰는데, 2만큼 평행이동을 해도 똑같이 성립이 되는지 궁금했었는데 이해가 되네요! 정말 감사합니다 ㅎㅎ 덕분에 수준높은 풀이법 하나 배워갑니다 . 감사합니다!!
저도 굳이 근의 분리까지 안끌고가고 싶어서
저는 그냥 잘 모르겠으면 화끈하게 근의공식 때리고, 두 근이 모두 k보다 작아야한다면
D >=0인 경우, 그냥 더 큰 근이 k보다 작다! 라고 하게끔 가르쳤는데
기하학적인 풀이도 너무 좋은 듯 합니다 ㅎ
잘 보고 갑니다!
관찰중인 문자의 차수가 여러개가 아닌 이상 (예를 들면 식에 a도 있고 a제곱도 있는 경우), 위 기하적인 풀이가 근의 분리를 완전히 대체합니다
.
의견 공유 감사해요 ㅎㅎ
고정된 요소가 필요하다는 말씀 맞으실까요? 좋은 댓글 감사합니다 ㅎㅎ
오 이거 좋네요. 시간 단축 꿀일 듯.
+ 이번 6평 14번 부등식도, 부등식 여러개로 케이스 분류해서 끼워 맞추지 않고, 일차함수랑 이차함수 만나는 걸로 구할 수 있음!
정말감사합니다
오늘도 배워갑니다 감사합니다
많은 상황에서 상위 호환은 맞지만 계수의 꼴에 따라선 대체가 안 되는 경우도 있습니다!
(고정점 지나는 직선으로 해석이 안 되는 경우도 있음)
저도 위에 댓글에 달아놨는데, 그 경우에는 기하적 의미를 깔끔하게 부여할 수 없습니다
본문에도 추가해야겠네요
질질 쌌다.
미분을 활용하여 직선의 회전 이동을 관찰한다, 감사히 잘 읽었습니다!
좋은 글 감사합니다
선생님 진짜 미틴넘이시네요 미친초고수다